These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
181 related articles for article (PubMed ID: 17461572)
1. Theoretical study of alpha-84 phycocyanobilin chromophore from the thermophilic cyanobacterium Synechococcus elongatus. Zazza C; Sanna N; Aschi M J Phys Chem B; 2007 May; 111(20):5596-601. PubMed ID: 17461572 [TBL] [Abstract][Full Text] [Related]
2. A time dependent density functional theory study of alpha-84 phycocyanobilin chromophore in C-phycocyanin. Wan J; Xu X; Ren Y; Yang G J Phys Chem B; 2005 Jun; 109(22):11088-90. PubMed ID: 16852351 [TBL] [Abstract][Full Text] [Related]
3. Influence of molecular geometry, exchange-correlation functional, and solvent effects in the modeling of vertical excitation energies in phthalocyanines using time-dependent density functional theory (TDDFT) and polarized continuum model TDDFT methods: can modern computational chemistry methods explain experimental controversies? Nemykin VN; Hadt RG; Belosludov RV; Mizuseki H; Kawazoe Y J Phys Chem A; 2007 Dec; 111(50):12901-13. PubMed ID: 18004829 [TBL] [Abstract][Full Text] [Related]
4. A time-dependent density functional theory investigation of the spectroscopic properties of the beta-subunit in C-phycocyanin. Ren Y; Wan J; Xu X; Zhang Q; Yang G J Phys Chem B; 2006 Sep; 110(37):18665-9. PubMed ID: 16970497 [TBL] [Abstract][Full Text] [Related]
5. Under light limiting growth, CpcB lyase null mutants of the Cyanobacterium Synechococcus sp. PCC 7002 are capable of producing pigmented beta phycocyanin but with altered chromophore function. Derks AK; Vasiliev S; Bruce D Biochemistry; 2008 Nov; 47(45):11877-84. PubMed ID: 18925744 [TBL] [Abstract][Full Text] [Related]
6. Adapting photosynthesis to the near-infrared: non-covalent binding of phycocyanobilin provides an extreme spectral red-shift to phycobilisome core-membrane linker from Synechococcus sp. PCC7335. Miao D; Ding WL; Zhao BQ; Lu L; Xu QZ; Scheer H; Zhao KH Biochim Biophys Acta; 2016 Jun; 1857(6):688-94. PubMed ID: 27045046 [TBL] [Abstract][Full Text] [Related]
7. Nature of low-lying excited states in H-aggregated perylene bisimide dyes: results of TD-LRC-DFT and the mixed exciton model. Pan F; Gao F; Liang W; Zhao Y J Phys Chem B; 2009 Nov; 113(44):14581-7. PubMed ID: 19863136 [TBL] [Abstract][Full Text] [Related]
8. DFT/TDDFT exploration of the potential energy surfaces of the ground state and excited states of Fe2(S2C3H6)(CO)6: a simple functional model of the [FeFe] hydrogenase active site. Bertini L; Greco C; De Gioia L; Fantucci P J Phys Chem A; 2009 May; 113(19):5657-70. PubMed ID: 19378958 [TBL] [Abstract][Full Text] [Related]
9. Benchmarks for electronically excited states: time-dependent density functional theory and density functional theory based multireference configuration interaction. Silva-Junior MR; Schreiber M; Sauer SP; Thiel W J Chem Phys; 2008 Sep; 129(10):104103. PubMed ID: 19044904 [TBL] [Abstract][Full Text] [Related]
10. Solvent accessibility of the phycocyanobilin chromophore in the alpha subunit of C-phycocyanin: implications for a molecular mechanism for inertial protein-matrix solvation dynamics. Homoelle BJ; Beck WF Biochemistry; 1997 Oct; 36(42):12970-5. PubMed ID: 9335557 [TBL] [Abstract][Full Text] [Related]
11. Computational prediction of absorbance maxima for a structurally diverse series of engineered green fluorescent protein chromophores. Timerghazin QK; Carlson HJ; Liang C; Campbell RE; Brown A J Phys Chem B; 2008 Feb; 112(8):2533-41. PubMed ID: 18247600 [TBL] [Abstract][Full Text] [Related]
12. The excited-state chemistry of phycocyanobilin: a semiempirical study. Göller AH; Strehlow D; Hermann G Chemphyschem; 2005 Jul; 6(7):1259-68. PubMed ID: 15942968 [TBL] [Abstract][Full Text] [Related]
13. Theoretical study of singlet and triplet excitation energies in oligothiophenes. Fabiano E; Sala FD; Cingolani R; Weimer M; Görling A J Phys Chem A; 2005 Apr; 109(13):3078-85. PubMed ID: 16833632 [TBL] [Abstract][Full Text] [Related]
14. Quantum mechanics/molecular mechanics calculation of the Raman spectra of the phycocyanobilin chromophore in alpha-C-phycocyanin. Mroginski MA; Mark F; Thiel W; Hildebrandt P Biophys J; 2007 Sep; 93(6):1885-94. PubMed ID: 17513350 [TBL] [Abstract][Full Text] [Related]
15. Validation of the DFT/N07D computational model on the magnetic, vibrational and electronic properties of vinyl radical. Barone V; Bloino J; Biczysko M Phys Chem Chem Phys; 2010 Feb; 12(5):1092-101. PubMed ID: 20094674 [TBL] [Abstract][Full Text] [Related]
16. On the absorption spectra of recently synthesized carbonyl dyes: TD-DFT insights. Jacquemin D; Peltier C; Ciofini I J Phys Chem A; 2010 Sep; 114(35):9579-82. PubMed ID: 20704297 [TBL] [Abstract][Full Text] [Related]
17. QM/MM Car-Parrinello molecular dynamics study of the solvent effects on the ground state and on the first excited singlet state of acetone in water. Röhrig UF; Frank I; Hutter J; Laio A; VandeVondele J; Rothlisberger U Chemphyschem; 2003 Nov; 4(11):1177-82. PubMed ID: 14652995 [TBL] [Abstract][Full Text] [Related]
18. Solid-state NMR spectroscopic study of chromophore-protein interactions in the Pr ground state of plant phytochrome A. Song C; Essen LO; Gärtner W; Hughes J; Matysik J Mol Plant; 2012 May; 5(3):698-715. PubMed ID: 22419823 [TBL] [Abstract][Full Text] [Related]
19. Solution-state (15)N NMR spectroscopic study of alpha-C-phycocyanin: implications for the structure of the chromophore-binding pocket of the cyanobacterial phytochrome Cph1. Hahn J; Kühne R; Schmieder P Chembiochem; 2007 Dec; 8(18):2249-55. PubMed ID: 17973280 [TBL] [Abstract][Full Text] [Related]
20. Conformational flexibility of phycocyanobilin: an AM1 semiempirical study. Göller AH; Strehlow D; Hermann G Chemphyschem; 2001 Nov; 2(11):665-71. PubMed ID: 23686901 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]