BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

204 related articles for article (PubMed ID: 17462838)

  • 1. Development of a QSAR for worst case estimates of acute toxicity of chemically reactive compounds.
    Freidig AP; Dekkers S; Verwei M; Zvinavashe E; Bessems JG; van de Sandt JJ
    Toxicol Lett; 2007 May; 170(3):214-22. PubMed ID: 17462838
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A QSAR for baseline toxicity: validation, domain of application, and prediction.
    Oberg T
    Chem Res Toxicol; 2004 Dec; 17(12):1630-7. PubMed ID: 15606139
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Qsar investigation of a large data set for fish, algae and Daphnia toxicity.
    Lessigiarska I; Wortha AP; Sokull-Klüttgen B; Jeram S; Dearden JC; Netzeva TI; Cronin MT
    SAR QSAR Environ Res; 2004; 15(5-6):413-31. PubMed ID: 15669699
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Mode of action-based local QSAR modeling for the prediction of acute toxicity in the fathead minnow.
    Yuan H; Wang YY; Cheng YY
    J Mol Graph Model; 2007 Jul; 26(1):327-35. PubMed ID: 17224289
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Impact of bioavailability on the correlation between in vitro cytotoxic and in vivo acute fish toxic concentrations of chemicals.
    Gülden M; Seibert H
    Aquat Toxicol; 2005 May; 72(4):327-37. PubMed ID: 15848252
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Use of computer-assisted prediction of toxic effects of chemical substances.
    Simon-Hettich B; Rothfuss A; Steger-Hartmann T
    Toxicology; 2006 Jul; 224(1-2):156-62. PubMed ID: 16707203
    [TBL] [Abstract][Full Text] [Related]  

  • 7. On the number of EINECS compounds that can be covered by (Q)SAR models for acute toxicity.
    Zvinavashe E; Murk AJ; Rietjens IM
    Toxicol Lett; 2009 Jan; 184(1):67-72. PubMed ID: 19041378
    [TBL] [Abstract][Full Text] [Related]  

  • 8. An alternative approach for the safety evaluation of new and existing chemicals, an exercise in integrated testing.
    Gubbels-van Hal WM; Blaauboer BJ; Barentsen HM; Hoitink MA; Meerts IA; van der Hoeven JC
    Regul Toxicol Pharmacol; 2005 Aug; 42(3):284-95. PubMed ID: 15979772
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Modelling acute oral mammalian toxicity. 1. Definition of a quantifiable baseline effect.
    Koleva YK; Cronin MT; Madden JC; Schwöbel JA
    Toxicol In Vitro; 2011 Oct; 25(7):1281-93. PubMed ID: 21557997
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Prediction of rodent carcinogenic potential of naturally occurring chemicals in the human diet using high-throughput QSAR predictive modeling.
    Valerio LG; Arvidson KB; Chanderbhan RF; Contrera JF
    Toxicol Appl Pharmacol; 2007 Jul; 222(1):1-16. PubMed ID: 17482223
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Per- and polyfluoro toxicity (LC(50) inhalation) study in rat and mouse using QSAR modeling.
    Bhhatarai B; Gramatica P
    Chem Res Toxicol; 2010 Mar; 23(3):528-39. PubMed ID: 20095582
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Comparison of in vitro and in vivo acute fish toxicity in relation to toxicant mode of action.
    Knauer K; Lampert C; Gonzalez-Valero J
    Chemosphere; 2007 Jul; 68(8):1435-41. PubMed ID: 17512969
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Skin irritation: prevalence, variability, and regulatory classification of existing in vivo data from industrial chemicals.
    Hoffmann S; Cole T; Hartung T
    Regul Toxicol Pharmacol; 2005 Apr; 41(3):159-66. PubMed ID: 15748793
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Strengths and limitations of using repeat-dose toxicity studies to predict effects on fertility.
    Dent MP
    Regul Toxicol Pharmacol; 2007 Aug; 48(3):241-58. PubMed ID: 17512650
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Databases applicable to quantitative hazard/risk assessment--towards a predictive systems toxicology.
    Waters M; Jackson M
    Toxicol Appl Pharmacol; 2008 Nov; 233(1):34-44. PubMed ID: 18675838
    [TBL] [Abstract][Full Text] [Related]  

  • 16. [Perspective of predictive toxicity assessment of in vivo repeated dose toxicity using structural activity relationship].
    Ono A
    Kokuritsu Iyakuhin Shokuhin Eisei Kenkyusho Hokoku; 2010; (128):44-9. PubMed ID: 21381395
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Towards more efficient testing strategies--analyzing the efficiency of toxicity data requirements in relation to the criteria for classification and labelling.
    Nordberg A; Rudén C; Hansson SO
    Regul Toxicol Pharmacol; 2008 Apr; 50(3):412-9. PubMed ID: 18334276
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Development of quantitative structure-activity relationship (QSAR) models to predict the carcinogenic potency of chemicals I. Alternative toxicity measures as an estimator of carcinogenic potency.
    Venkatapathy R; Wang CY; Bruce RM; Moudgal C
    Toxicol Appl Pharmacol; 2009 Jan; 234(2):209-21. PubMed ID: 18977375
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Research perspectives for pre-screening alternatives to animal experimentation: on the relevance of cytotoxicity measurements, barrier passage determinations and high throughput screening in vitro to select potentially hazardous compounds in large sets of chemicals.
    Walum E; Hedander J; Garberg P
    Toxicol Appl Pharmacol; 2005 Sep; 207(2 Suppl):393-7. PubMed ID: 15982691
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Acutoxbase, an innovative database for in vitro acute toxicity studies.
    Kinsner-Ovaskainen A; Rzepka R; Rudowski R; Coecke S; Cole T; Prieto P
    Toxicol In Vitro; 2009 Apr; 23(3):476-85. PubMed ID: 19159672
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.