These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
199 related articles for article (PubMed ID: 17462838)
1. Development of a QSAR for worst case estimates of acute toxicity of chemically reactive compounds. Freidig AP; Dekkers S; Verwei M; Zvinavashe E; Bessems JG; van de Sandt JJ Toxicol Lett; 2007 May; 170(3):214-22. PubMed ID: 17462838 [TBL] [Abstract][Full Text] [Related]
2. A QSAR for baseline toxicity: validation, domain of application, and prediction. Oberg T Chem Res Toxicol; 2004 Dec; 17(12):1630-7. PubMed ID: 15606139 [TBL] [Abstract][Full Text] [Related]
3. Qsar investigation of a large data set for fish, algae and Daphnia toxicity. Lessigiarska I; Wortha AP; Sokull-Klüttgen B; Jeram S; Dearden JC; Netzeva TI; Cronin MT SAR QSAR Environ Res; 2004; 15(5-6):413-31. PubMed ID: 15669699 [TBL] [Abstract][Full Text] [Related]
4. Mode of action-based local QSAR modeling for the prediction of acute toxicity in the fathead minnow. Yuan H; Wang YY; Cheng YY J Mol Graph Model; 2007 Jul; 26(1):327-35. PubMed ID: 17224289 [TBL] [Abstract][Full Text] [Related]
5. Impact of bioavailability on the correlation between in vitro cytotoxic and in vivo acute fish toxic concentrations of chemicals. Gülden M; Seibert H Aquat Toxicol; 2005 May; 72(4):327-37. PubMed ID: 15848252 [TBL] [Abstract][Full Text] [Related]
6. Use of computer-assisted prediction of toxic effects of chemical substances. Simon-Hettich B; Rothfuss A; Steger-Hartmann T Toxicology; 2006 Jul; 224(1-2):156-62. PubMed ID: 16707203 [TBL] [Abstract][Full Text] [Related]
7. On the number of EINECS compounds that can be covered by (Q)SAR models for acute toxicity. Zvinavashe E; Murk AJ; Rietjens IM Toxicol Lett; 2009 Jan; 184(1):67-72. PubMed ID: 19041378 [TBL] [Abstract][Full Text] [Related]
8. An alternative approach for the safety evaluation of new and existing chemicals, an exercise in integrated testing. Gubbels-van Hal WM; Blaauboer BJ; Barentsen HM; Hoitink MA; Meerts IA; van der Hoeven JC Regul Toxicol Pharmacol; 2005 Aug; 42(3):284-95. PubMed ID: 15979772 [TBL] [Abstract][Full Text] [Related]
9. Modelling acute oral mammalian toxicity. 1. Definition of a quantifiable baseline effect. Koleva YK; Cronin MT; Madden JC; Schwöbel JA Toxicol In Vitro; 2011 Oct; 25(7):1281-93. PubMed ID: 21557997 [TBL] [Abstract][Full Text] [Related]
10. Prediction of rodent carcinogenic potential of naturally occurring chemicals in the human diet using high-throughput QSAR predictive modeling. Valerio LG; Arvidson KB; Chanderbhan RF; Contrera JF Toxicol Appl Pharmacol; 2007 Jul; 222(1):1-16. PubMed ID: 17482223 [TBL] [Abstract][Full Text] [Related]
11. Per- and polyfluoro toxicity (LC(50) inhalation) study in rat and mouse using QSAR modeling. Bhhatarai B; Gramatica P Chem Res Toxicol; 2010 Mar; 23(3):528-39. PubMed ID: 20095582 [TBL] [Abstract][Full Text] [Related]
12. Comparison of in vitro and in vivo acute fish toxicity in relation to toxicant mode of action. Knauer K; Lampert C; Gonzalez-Valero J Chemosphere; 2007 Jul; 68(8):1435-41. PubMed ID: 17512969 [TBL] [Abstract][Full Text] [Related]
13. Skin irritation: prevalence, variability, and regulatory classification of existing in vivo data from industrial chemicals. Hoffmann S; Cole T; Hartung T Regul Toxicol Pharmacol; 2005 Apr; 41(3):159-66. PubMed ID: 15748793 [TBL] [Abstract][Full Text] [Related]
14. Strengths and limitations of using repeat-dose toxicity studies to predict effects on fertility. Dent MP Regul Toxicol Pharmacol; 2007 Aug; 48(3):241-58. PubMed ID: 17512650 [TBL] [Abstract][Full Text] [Related]
15. Databases applicable to quantitative hazard/risk assessment--towards a predictive systems toxicology. Waters M; Jackson M Toxicol Appl Pharmacol; 2008 Nov; 233(1):34-44. PubMed ID: 18675838 [TBL] [Abstract][Full Text] [Related]
16. [Perspective of predictive toxicity assessment of in vivo repeated dose toxicity using structural activity relationship]. Ono A Kokuritsu Iyakuhin Shokuhin Eisei Kenkyusho Hokoku; 2010; (128):44-9. PubMed ID: 21381395 [TBL] [Abstract][Full Text] [Related]
17. Towards more efficient testing strategies--analyzing the efficiency of toxicity data requirements in relation to the criteria for classification and labelling. Nordberg A; Rudén C; Hansson SO Regul Toxicol Pharmacol; 2008 Apr; 50(3):412-9. PubMed ID: 18334276 [TBL] [Abstract][Full Text] [Related]
18. Development of quantitative structure-activity relationship (QSAR) models to predict the carcinogenic potency of chemicals I. Alternative toxicity measures as an estimator of carcinogenic potency. Venkatapathy R; Wang CY; Bruce RM; Moudgal C Toxicol Appl Pharmacol; 2009 Jan; 234(2):209-21. PubMed ID: 18977375 [TBL] [Abstract][Full Text] [Related]
19. Research perspectives for pre-screening alternatives to animal experimentation: on the relevance of cytotoxicity measurements, barrier passage determinations and high throughput screening in vitro to select potentially hazardous compounds in large sets of chemicals. Walum E; Hedander J; Garberg P Toxicol Appl Pharmacol; 2005 Sep; 207(2 Suppl):393-7. PubMed ID: 15982691 [TBL] [Abstract][Full Text] [Related]
20. Acutoxbase, an innovative database for in vitro acute toxicity studies. Kinsner-Ovaskainen A; Rzepka R; Rudowski R; Coecke S; Cole T; Prieto P Toxicol In Vitro; 2009 Apr; 23(3):476-85. PubMed ID: 19159672 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]