These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

293 related articles for article (PubMed ID: 17462879)

  • 21. The prospects of cellulase-producing bacteria for the bioconversion of lignocellulosic biomass.
    Maki M; Leung KT; Qin W
    Int J Biol Sci; 2009 Jul; 5(5):500-16. PubMed ID: 19680472
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Anaerobic fermentation of glycerol: a path to economic viability for the biofuels industry.
    Yazdani SS; Gonzalez R
    Curr Opin Biotechnol; 2007 Jun; 18(3):213-9. PubMed ID: 17532205
    [TBL] [Abstract][Full Text] [Related]  

  • 23. The realm of cellulases in biorefinery development.
    Chandel AK; Chandrasekhar G; Silva MB; Silvério da Silva S
    Crit Rev Biotechnol; 2012 Sep; 32(3):187-202. PubMed ID: 21929293
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Glycosylation of hyperthermostable designer cellulosome components yields enhanced stability and cellulose hydrolysis.
    Kahn A; Moraïs S; Chung D; Sarai NS; Hengge NN; Kahn A; Himmel ME; Bayer EA; Bomble YJ
    FEBS J; 2020 Oct; 287(20):4370-4388. PubMed ID: 32064769
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Comparative study of corn stover pretreated by dilute acid and cellulose solvent-based lignocellulose fractionation: Enzymatic hydrolysis, supramolecular structure, and substrate accessibility.
    Zhu Z; Sathitsuksanoh N; Vinzant T; Schell DJ; McMillan JD; Zhang YH
    Biotechnol Bioeng; 2009 Jul; 103(4):715-24. PubMed ID: 19337984
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Production of fermentable glucose from bioconversion of cellulose using efficient microbial cellulases produced from water hyacinth waste.
    Tripathi M; Lal B; Syed A; Mishra PK; Elgorban AM; Verma M; Singh R; Mohammad A; Srivastava N
    Int J Biol Macromol; 2023 Dec; 252():126376. PubMed ID: 37595712
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Reactor scale up for biological conversion of cellulosic biomass to ethanol.
    Shao X; Lynd L; Bakker A; LaRoche R; Wyman C
    Bioprocess Biosyst Eng; 2010 May; 33(4):485-93. PubMed ID: 19649658
    [TBL] [Abstract][Full Text] [Related]  

  • 28. From cellulosomes to cellulosomics.
    Bayer EA; Lamed R; White BA; Flint HJ
    Chem Rec; 2008; 8(6):364-77. PubMed ID: 19107866
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Design of highly efficient cellulase mixtures for enzymatic hydrolysis of cellulose.
    Gusakov AV; Salanovich TN; Antonov AI; Ustinov BB; Okunev ON; Burlingame R; Emalfarb M; Baez M; Sinitsyn AP
    Biotechnol Bioeng; 2007 Aug; 97(5):1028-38. PubMed ID: 17221887
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Effect of multiple copies of cohesins on cellulase and hemicellulase activities of Clostridium cellulovorans mini-cellulosomes.
    Cha J; Matsuoka S; Chan H; Yukawa H; Inui M; Doi RH
    J Microbiol Biotechnol; 2007 Nov; 17(11):1782-8. PubMed ID: 18092461
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Isolation and characterization of a multienzyme complex (cellulosome) of the Paenibacillus curdlanolyticus B-6 grown on Avicel under aerobic conditions.
    Waeonukul R; Kyu KL; Sakka K; Ratanakhanokchai K
    J Biosci Bioeng; 2009 Jun; 107(6):610-4. PubMed ID: 19447336
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Plant genetic engineering for biofuel production: towards affordable cellulosic ethanol.
    Sticklen MB
    Nat Rev Genet; 2008 Jun; 9(6):433-43. PubMed ID: 18487988
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Cellulases for biomass degradation: comparing recombinant cellulase expression platforms.
    Garvey M; Klose H; Fischer R; Lambertz C; Commandeur U
    Trends Biotechnol; 2013 Oct; 31(10):581-93. PubMed ID: 23910542
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Enhancement of cellulosome-mediated deconstruction of cellulose by improving enzyme thermostability.
    Moraïs S; Stern J; Kahn A; Galanopoulou AP; Yoav S; Shamshoum M; Smith MA; Hatzinikolaou DG; Arnold FH; Bayer EA
    Biotechnol Biofuels; 2016; 9():164. PubMed ID: 27493686
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Determination of the cellulase activity distribution in Clostridium thermocellum and Caldicellulosiruptor obsidiansis cultures using a fluorescent substrate.
    Morrell-Falvey JL; Elkins JG; Wang ZW
    J Environ Sci (China); 2015 Aug; 34():212-8. PubMed ID: 26257364
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Molecular engineering of the cellulosome complex for affinity and bioenergy applications.
    Nordon RE; Craig SJ; Foong FC
    Biotechnol Lett; 2009 Apr; 31(4):465-76. PubMed ID: 19116695
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Development of microorganisms for cellulose-biofuel consolidated bioprocessings: metabolic engineers' tricks.
    Mazzoli R
    Comput Struct Biotechnol J; 2012; 3():e201210007. PubMed ID: 24688667
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Cellulosome complexes: natural biocatalysts as arming microcompartments of enzymes.
    Bae J; Morisaka H; Kuroda K; Ueda M
    J Mol Microbiol Biotechnol; 2013; 23(4-5):370-8. PubMed ID: 23920499
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Enzyme hydrolysis and ethanol fermentation of liquid hot water and AFEX pretreated distillers' grains at high-solids loadings.
    Kim Y; Hendrickson R; Mosier NS; Ladisch MR; Bals B; Balan V; Dale BE
    Bioresour Technol; 2008 Aug; 99(12):5206-15. PubMed ID: 18023338
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Engineered microbial systems for enhanced conversion of lignocellulosic biomass.
    Elkins JG; Raman B; Keller M
    Curr Opin Biotechnol; 2010 Oct; 21(5):657-62. PubMed ID: 20579868
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 15.