These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

128 related articles for article (PubMed ID: 17462913)

  • 1. Multivariate time-frequency analysis of electromagnetic brain activity during bimanual motor learning.
    Boonstra TW; Daffertshofer A; Breakspear M; Beek PJ
    Neuroimage; 2007 Jun; 36(2):370-7. PubMed ID: 17462913
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Cortico-spinal synchronization reflects changes in performance when learning a complex bimanual task.
    Houweling S; van Dijk BW; Beek PJ; Daffertshofer A
    Neuroimage; 2010 Feb; 49(4):3269-75. PubMed ID: 19922805
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A method for spatiotemporal mapping of event-related modulation of cortical rhythmic activity.
    Laaksonen H; Kujala J; Salmelin R
    Neuroimage; 2008 Aug; 42(1):207-17. PubMed ID: 18538584
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Neural changes induced by learning a challenging perceptual-motor task.
    Houweling S; Daffertshofer A; van Dijk BW; Beek PJ
    Neuroimage; 2008 Jul; 41(4):1395-407. PubMed ID: 18485745
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Neural correlates of the spontaneous phase transition during bimanual coordination.
    Aramaki Y; Honda M; Okada T; Sadato N
    Cereb Cortex; 2006 Sep; 16(9):1338-48. PubMed ID: 16306323
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Asymmetric control mechanisms of bimanual coordination: an application of directed connectivity analysis to kinematic and functional MRI data.
    Maki Y; Wong KF; Sugiura M; Ozaki T; Sadato N
    Neuroimage; 2008 Oct; 42(4):1295-304. PubMed ID: 18674627
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Functional connectivity of cortical networks involved in bimanual motor sequence learning.
    Sun FT; Miller LM; Rao AA; D'Esposito M
    Cereb Cortex; 2007 May; 17(5):1227-34. PubMed ID: 16855008
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Decoding center-out hand velocity from MEG signals during visuomotor adaptation.
    Bradberry TJ; Rong F; Contreras-Vidal JL
    Neuroimage; 2009 Oct; 47(4):1691-700. PubMed ID: 19539036
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Preparatory activity in motor cortex reflects learning of local visuomotor skills.
    Paz R; Boraud T; Natan C; Bergman H; Vaadia E
    Nat Neurosci; 2003 Aug; 6(8):882-90. PubMed ID: 12872127
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Activation of fast sleep spindles at the premotor cortex and parietal areas contributes to motor learning: a study using sLORETA.
    Tamaki M; Matsuoka T; Nittono H; Hori T
    Clin Neurophysiol; 2009 May; 120(5):878-86. PubMed ID: 19376746
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Localization of sensorimotor cortical rhythms induced by tactile stimulation using spatially filtered MEG.
    Gaetz W; Cheyne D
    Neuroimage; 2006 Apr; 30(3):899-908. PubMed ID: 16326116
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Increased functional connectivity is crucial for learning novel muscle synergies.
    McNamara A; Tegenthoff M; Dinse H; Büchel C; Binkofski F; Ragert P
    Neuroimage; 2007 Apr; 35(3):1211-8. PubMed ID: 17329130
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Spatiotemporal patterns of movement-related fields in stroke patients.
    Kotani K; Kinomoto Y; Yamada M; Deguchi J; Tonoike M; Horii K; Miyatake S; Kuroiwa T; Noguchi T
    Neurol Clin Neurophysiol; 2004 Nov; 2004():63. PubMed ID: 16012611
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Repetitive transcranial magnetic stimulation to the primary motor cortex interferes with motor learning by observing.
    Brown LE; Wilson ET; Gribble PL
    J Cogn Neurosci; 2009 May; 21(5):1013-22. PubMed ID: 18702578
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Acquisition of a new bimanual coordination pattern modulates the cerebral activations elicited by an intrinsic pattern: an fMRI study.
    Rémy F; Wenderoth N; Lipkens K; Swinnen SP
    Cortex; 2008 May; 44(5):482-93. PubMed ID: 18387582
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Combined MEG and EEG methodology for non-invasive recording of infraslow activity in the human cortex.
    Leistner S; Sander T; Burghoff M; Curio G; Trahms L; Mackert BM
    Clin Neurophysiol; 2007 Dec; 118(12):2774-80. PubMed ID: 17905653
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Assessment of sensorimotor cortical representation asymmetries and motor skills in violin players.
    Schwenkreis P; El Tom S; Ragert P; Pleger B; Tegenthoff M; Dinse HR
    Eur J Neurosci; 2007 Dec; 26(11):3291-302. PubMed ID: 18028115
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Beta-range cortical motor spectral power and corticomuscular coherence as a mechanism for effective corticospinal interaction during steady-state motor output.
    Kristeva R; Patino L; Omlor W
    Neuroimage; 2007 Jul; 36(3):785-92. PubMed ID: 17493837
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Cortical ensemble activity increasingly predicts behaviour outcomes during learning of a motor task.
    Laubach M; Wessberg J; Nicolelis MA
    Nature; 2000 Jun; 405(6786):567-71. PubMed ID: 10850715
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Single-trial reconstruction of finger-pinch forces from human motor-cortical activation measured by near-infrared spectroscopy (NIRS).
    Nambu I; Osu R; Sato MA; Ando S; Kawato M; Naito E
    Neuroimage; 2009 Aug; 47(2):628-37. PubMed ID: 19393320
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.