These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

229 related articles for article (PubMed ID: 17462974)

  • 41. Identification of genes differentially expressed in association with reduced azole susceptibility in Saccharomyces cerevisiae.
    Barker KS; Pearson MM; Rogers PD
    J Antimicrob Chemother; 2003 May; 51(5):1131-40. PubMed ID: 12697649
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Identification of Chemical-Genetic Interactions via Parallel Analysis of Barcoded Yeast Strains.
    Suresh S; Schlecht U; Xu W; Miranda M; Davis RW; Nislow C; Giaever G; St Onge RP
    Cold Spring Harb Protoc; 2016 Sep; 2016(9):. PubMed ID: 27587778
    [TBL] [Abstract][Full Text] [Related]  

  • 43. SIR2 and other genes are abundantly expressed in long-lived natural segregants for replicative aging of the budding yeast Saccharomyces cerevisiae.
    Guo Z; Adomas AB; Jackson ED; Qin H; Townsend JP
    FEMS Yeast Res; 2011 Jun; 11(4):345-55. PubMed ID: 21306556
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Induction of morphological alterations by antineoplastic agents in yeast.
    Stavrinidis E; Delitheos A; Tiligada E
    Folia Microbiol (Praha); 2002; 47(2):157-60. PubMed ID: 12058394
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Genome-wide analysis of barcoded Saccharomyces cerevisiae gene-deletion mutants in pooled cultures.
    Pierce SE; Davis RW; Nislow C; Giaever G
    Nat Protoc; 2007; 2(11):2958-74. PubMed ID: 18007632
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Differential toxicities of anticancer agents among DNA repair and checkpoint mutants of Saccharomyces cerevisiae.
    Simon JA; Szankasi P; Nguyen DK; Ludlow C; Dunstan HM; Roberts CJ; Jensen EL; Hartwell LH; Friend SH
    Cancer Res; 2000 Jan; 60(2):328-33. PubMed ID: 10667584
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Ecological and evolutionary genomics of Saccharomyces cerevisiae.
    Landry CR; Townsend JP; Hartl DL; Cavalieri D
    Mol Ecol; 2006 Mar; 15(3):575-91. PubMed ID: 16499686
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Forward chemical genetics in yeast for discovery of chemical probes targeting metabolism.
    St Onge R; Schlecht U; Scharfe C; Evangelista M
    Molecules; 2012 Nov; 17(11):13098-115. PubMed ID: 23128089
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Genomic and transcriptome analyses reveal that MAPK- and phosphatidylinositol-signaling pathways mediate tolerance to 5-hydroxymethyl-2-furaldehyde for industrial yeast Saccharomyces cerevisiae.
    Zhou Q; Liu ZL; Ning K; Wang A; Zeng X; Xu J
    Sci Rep; 2014 Oct; 4():6556. PubMed ID: 25296911
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Analysis of transcriptional profiles of Saccharomyces cerevisiae exposed to bisphenol A.
    Bereketoglu C; Arga KY; Eraslan S; Mertoglu B
    Curr Genet; 2017 May; 63(2):253-274. PubMed ID: 27460658
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Navigating yeast genome maintenance with functional genomics.
    Measday V; Stirling PC
    Brief Funct Genomics; 2016 Mar; 15(2):119-29. PubMed ID: 26323482
    [TBL] [Abstract][Full Text] [Related]  

  • 52. SKY1 and IXR1 interactions, their effects on cisplatin and spermine resistance in Saccharomyces cerevisiae.
    Rodríguez Lombardero S; Vizoso Vázquez A; Rodríguez Belmonte E; González Siso MI; Cerdán ME
    Can J Microbiol; 2012 Feb; 58(2):184-8. PubMed ID: 22260231
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Genome-wide identification of genes required for yeast growth under imatinib stress: vacuolar H+-ATPase function is an important target of this anticancer drug.
    dos Santos SC; Sá-Correia I
    OMICS; 2009 Jun; 13(3):185-98. PubMed ID: 19260806
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Systematic Identification of Determinants for Single-Strand Annealing-Mediated Deletion Formation in
    Segura-Wang M; Onishi-Seebacher M; Stütz AM; Mardin BR; Korbel JO
    G3 (Bethesda); 2017 Oct; 7(10):3269-3279. PubMed ID: 28818866
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Genomic analysis of stationary-phase and exit in Saccharomyces cerevisiae: gene expression and identification of novel essential genes.
    Martinez MJ; Roy S; Archuletta AB; Wentzell PD; Anna-Arriola SS; Rodriguez AL; Aragon AD; Quiñones GA; Allen C; Werner-Washburne M
    Mol Biol Cell; 2004 Dec; 15(12):5295-305. PubMed ID: 15456898
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Progress in the genomics and genome-wide study of sake yeast.
    Akao T
    Biosci Biotechnol Biochem; 2019 Aug; 83(8):1463-1472. PubMed ID: 30835624
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Chemogenomic approaches to elucidation of gene function and genetic pathways.
    Pierce SE; Davis RW; Nislow C; Giaever G
    Methods Mol Biol; 2009; 548():115-43. PubMed ID: 19521822
    [TBL] [Abstract][Full Text] [Related]  

  • 58. A yeast strain biosensor to detect cell wall-perturbing agents.
    Rodriguez-Peña JM; Diez-Muñiz S; Nombela C; Arroyo J
    J Biotechnol; 2008 Feb; 133(3):311-7. PubMed ID: 18055054
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Yeast systems for demonstrating the targets of anti-topoisomerase II agents.
    Nitiss JL; Nitiss KC
    Methods Mol Biol; 2001; 95():315-27. PubMed ID: 11089243
    [No Abstract]   [Full Text] [Related]  

  • 60. Rapid Identification of Chemoresistance Mechanisms Using Yeast DNA Mismatch Repair Mutants.
    Ojini I; Gammie A
    G3 (Bethesda); 2015 Jul; 5(9):1925-35. PubMed ID: 26199284
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 12.