BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

85 related articles for article (PubMed ID: 17463029)

  • 1. Two-stage designs applying methods differing in costs.
    Goll A; Bauer P
    Bioinformatics; 2007 Jun; 23(12):1519-26. PubMed ID: 17463029
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Optimized multi-stage designs controlling the false discovery or the family-wise error rate.
    Zehetmayer S; Bauer P; Posch M
    Stat Med; 2008 Sep; 27(21):4145-60. PubMed ID: 18444249
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Two-stage designs for experiments with a large number of hypotheses.
    Zehetmayer S; Bauer P; Posch M
    Bioinformatics; 2005 Oct; 21(19):3771-7. PubMed ID: 16091414
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Optimization of two-stage genetic designs where data are combined using an accurate and efficient approximation for Pearson's statistic.
    Bukszár J; van den Oord EJ
    Biometrics; 2006 Dec; 62(4):1132-7. PubMed ID: 17156288
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Including sampling and phenotyping costs into the optimization of two stage designs for genomewide association studies.
    Müller HH; Pahl R; Schäfer H
    Genet Epidemiol; 2007 Dec; 31(8):844-52. PubMed ID: 17549751
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Adaptive two-stage analysis of genetic association in case-control designs.
    Zheng G; Song K; Elston RC
    Hum Hered; 2007; 63(3-4):175-86. PubMed ID: 17310127
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Balanced two-stage designs for phase II clinical trials.
    Ye F; Shyr Y
    Clin Trials; 2007; 4(5):514-24. PubMed ID: 17942467
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Optimal robust two-stage designs for genome-wide association studies.
    Nguyen TT; Pahl R; Schäfer H
    Ann Hum Genet; 2009 Nov; 73(Pt 6):638-51. PubMed ID: 19839987
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Detailed analysis of the relative power of direct and indirect association studies and the implications for their interpretation.
    Moskvina V; O'Donovan MC
    Hum Hered; 2007; 64(1):63-73. PubMed ID: 17483598
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Optimal designs for two-stage genome-wide association studies.
    Skol AD; Scott LJ; Abecasis GR; Boehnke M
    Genet Epidemiol; 2007 Nov; 31(7):776-88. PubMed ID: 17549752
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Optimal multistage designs--a general framework for efficient genome-wide association studies.
    Pahl R; Schäfer H; Müller HH
    Biostatistics; 2009 Apr; 10(2):297-309. PubMed ID: 19075295
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Computational methods for the comparative quantification of proteins in label-free LCn-MS experiments.
    Wong JW; Sullivan MJ; Cagney G
    Brief Bioinform; 2008 Mar; 9(2):156-65. PubMed ID: 17905794
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Optimal and minimax three-stage designs for phase II oncology clinical trials.
    Chen K; Shan M
    Contemp Clin Trials; 2008 Jan; 29(1):32-41. PubMed ID: 17544337
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Adaptive designs: looking for a needle in the haystack-a new challenge in medical research.
    Bauer P
    Stat Med; 2008 May; 27(10):1565-80. PubMed ID: 17935261
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Optimal designs of two-stage studies for estimation of sensitivity, specificity and positive predictive value.
    McNamee R
    Stat Med; 2002 Dec; 21(23):3609-25. PubMed ID: 12436459
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Statistical identification of differentially labeled peptides from liquid chromatography tandem mass spectrometry.
    Cho H; Smalley DM; Theodorescu D; Ley K; Lee JK
    Proteomics; 2007 Oct; 7(20):3681-92. PubMed ID: 17879999
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Improving the success rate of proteome analysis by modeling protein-abundance distributions and experimental designs.
    Eriksson J; Fenyö D
    Nat Biotechnol; 2007 Jun; 25(6):651-5. PubMed ID: 17557102
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Increasing the mass accuracy of high-resolution LC-MS data using background ions: a case study on the LTQ-Orbitrap.
    Scheltema RA; Kamleh A; Wildridge D; Ebikeme C; Watson DG; Barrett MP; Jansen RC; Breitling R
    Proteomics; 2008 Nov; 8(22):4647-56. PubMed ID: 18937253
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A Bayesian segmentation approach to ascertain copy number variations at the population level.
    Wu LY; Chipman HA; Bull SB; Briollais L; Wang K
    Bioinformatics; 2009 Jul; 25(13):1669-79. PubMed ID: 19389735
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Two-stage designs for dose-finding trials with a biologic endpoint using stepwise tests.
    Polley MY; Cheung YK
    Biometrics; 2008 Mar; 64(1):232-41. PubMed ID: 17573866
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.