These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
447 related articles for article (PubMed ID: 17463285)
21. Attachment of a hydrogen-bonding carboxylate side chain to an [FeFe]-hydrogenase model complex: influence on the catalytic mechanism. Gao W; Sun J; Akermark T; Li M; Eriksson L; Sun L; Akermark B Chemistry; 2010 Feb; 16(8):2537-46. PubMed ID: 20077533 [TBL] [Abstract][Full Text] [Related]
22. The unprecedented bridging coordination mode of 1,1-cyclobutane dicarboxylate (mu-cbdc-O,O') stabilized by intramolecular hydrogen bonds in ruthenium(II) complexes. Bratsos I; Zangrando E; Serli B; Katsaros N; Alessio E Dalton Trans; 2005 Dec; (24):3881-5. PubMed ID: 16311642 [TBL] [Abstract][Full Text] [Related]
23. Mononuclear nickel(III) complexes [Ni(III)(OR)(P(C6H3-3-SiMe3-2-S)3)](-) (R = Me, Ph) containing the terminal alkoxide ligand: relevance to the nickel site of oxidized-form [NiFe] hydrogenases. Chiou TW; Liaw WF Inorg Chem; 2008 Sep; 47(17):7908-13. PubMed ID: 18672877 [TBL] [Abstract][Full Text] [Related]
24. Binuclear iron-sulfur complexes with bidentate phosphine ligands as active site models of Fe-hydrogenase and their catalytic proton reduction. Gao W; Ekström J; Liu J; Chen C; Eriksson L; Weng L; Akermark B; Sun L Inorg Chem; 2007 Mar; 46(6):1981-91. PubMed ID: 17295467 [TBL] [Abstract][Full Text] [Related]
25. Ligand versus metal protonation of an iron hydrogenase active site mimic. Eilers G; Schwartz L; Stein M; Zampella G; de Gioia L; Ott S; Lomoth R Chemistry; 2007; 13(25):7075-84. PubMed ID: 17566128 [TBL] [Abstract][Full Text] [Related]
26. Efficient transfer of either one or two dithiolene ligands from nickel to ruthenium: synthesis and crystal structures of [Ru(SCR=CPhS)(2)(PPh(3))] and [RuCl(2)(SCR=CPhS)(PPh(3))(2)] (R = Ph, H). Adams H; Coffey AM; Morris MJ; Morris SA Inorg Chem; 2009 Dec; 48(24):11945-53. PubMed ID: 19921845 [TBL] [Abstract][Full Text] [Related]
27. Valence-state analysis through spectroelectrochemistry in a series of quinonoid-bridged diruthenium complexes [(acac)(2)Ru(mu-L)Ru(acac)(2)](n) (n=+2, +1, 0, -1, -2). Ghumaan S; Sarkar B; Maji S; Puranik VG; Fiedler J; Urbanos FA; Jimenez-Aparicio R; Kaim W; Lahiri GK Chemistry; 2008; 14(34):10816-28. PubMed ID: 18924186 [TBL] [Abstract][Full Text] [Related]
28. An autocatalytic mechanism for NiFe-hydrogenase: reduction to Ni(I) followed by oxidative addition. Lill SO; Siegbahn PE Biochemistry; 2009 Feb; 48(5):1056-66. PubMed ID: 19138102 [TBL] [Abstract][Full Text] [Related]
29. Nickel and iron complexes with N,P,N-type ligands: synthesis, structure and catalytic oligomerization of ethylene. Kermagoret A; Tomicki F; Braunstein P Dalton Trans; 2008 Jun; (22):2945-55. PubMed ID: 18493630 [TBL] [Abstract][Full Text] [Related]
30. DFT Investigation of H2 activation by [M(NHPnPr3)('S3')] (M = Ni, Pd). Insight into key factors relevant to the design of hydrogenase functional models. Zampella G; Bruschi M; Fantucci P; De Gioia L J Am Chem Soc; 2005 Sep; 127(38):13180-9. PubMed ID: 16173745 [TBL] [Abstract][Full Text] [Related]
31. Electronic structure of a binuclear nickel complex of relevance to [NiFe] hydrogenase. van Gastel M; Shaw JL; Blake AJ; Flores M; Schröder M; McMaster J; Lubitz W Inorg Chem; 2008 Dec; 47(24):11688-97. PubMed ID: 18998627 [TBL] [Abstract][Full Text] [Related]
32. Dihydrogen activation by sulfido-bridged dinuclear Ru/Ge complexes: insight into the [NiFe] hydrogenase unready state. Matsumoto T; Itakura N; Nakaya Y; Tatsumi K Chem Commun (Camb); 2011 Jan; 47(3):1030-2. PubMed ID: 21072402 [TBL] [Abstract][Full Text] [Related]
33. A trinuclear [NiFe] cluster exhibiting structural and functional key features of [NiFe] hydrogenases. Sellmann D; Lauderbach F; Geipel F; Heinemann FW; Moll M Angew Chem Int Ed Engl; 2004 Jun; 43(24):3141-4. PubMed ID: 15199561 [No Abstract] [Full Text] [Related]
34. Requirements for functional models of the iron hydrogenase active site: D2/H2O exchange activity in ((mu-SMe)(mu-pdt)[Fe(CO)2(PMe3)]2+)[BF4-]. Georgakaki IP; Miller ML; Darensbourg MY Inorg Chem; 2003 Apr; 42(8):2489-94. PubMed ID: 12691553 [TBL] [Abstract][Full Text] [Related]
35. Liberation of hydrogen sulfide during the catalytic action of Desulfovibrio hydrogenase under the atmosphere of hydrogen. Higuchi Y; Yagi T Biochem Biophys Res Commun; 1999 Feb; 255(2):295-9. PubMed ID: 10049702 [TBL] [Abstract][Full Text] [Related]
36. Direct detection of a hydrogen ligand in the [NiFe] center of the regulatory H2-sensing hydrogenase from Ralstonia eutropha in its reduced state by HYSCORE and ENDOR spectroscopy. Brecht M; van Gastel M; Buhrke T; Friedrich B; Lubitz W J Am Chem Soc; 2003 Oct; 125(43):13075-83. PubMed ID: 14570480 [TBL] [Abstract][Full Text] [Related]
37. Simple ligand effects switch a hydrogenase mimic between H2 and O2 activation. Kim K; Matsumoto T; Robertson A; Nakai H; Ogo S Chem Asian J; 2012 Jun; 7(6):1394-400. PubMed ID: 22383335 [TBL] [Abstract][Full Text] [Related]
38. Ni(II)/H(2)O(2) reactivity in bis[(pyridin-2-yl)methyl]amine tridentate ligand system. aromatic hydroxylation reaction by bis(mu-oxo)dinickel(III) complex. Kunishita A; Doi Y; Kubo M; Ogura T; Sugimoto H; Itoh S Inorg Chem; 2009 Jun; 48(11):4997-5004. PubMed ID: 19374371 [TBL] [Abstract][Full Text] [Related]
39. Trivalent iron and ruthenium complexes with a redox noninnocent (2-mercaptophenylimino)-methyl-4,6-di-tert-butylphenolate(2-) ligand. Roy N; Sproules S; Weyhermüller T; Wieghardt K Inorg Chem; 2009 Apr; 48(8):3783-91. PubMed ID: 19361249 [TBL] [Abstract][Full Text] [Related]
40. Heteroleptic arene ruthenium complexes based on meso-substituted dipyrrins: synthesis, structure, reactivity, and electrochemical studies. Yadav M; Singh AK; Maiti B; Pandey DS Inorg Chem; 2009 Aug; 48(16):7593-603. PubMed ID: 19610658 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]