These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
193 related articles for article (PubMed ID: 17464056)
61. Importance of mycoloyltransferases on the physiology of Corynebacterium glutamicum. Kacem R; De Sousa-D'Auria C; Tropis M; Chami M; Gounon P; Leblon G; Houssin C; Daffé M Microbiology (Reading); 2004 Jan; 150(Pt 1):73-84. PubMed ID: 14702399 [TBL] [Abstract][Full Text] [Related]
62. O-mycoloylated proteins from Corynebacterium: an unprecedented post-translational modification in bacteria. Huc E; Meniche X; Benz R; Bayan N; Ghazi A; Tropis M; Daffé M J Biol Chem; 2010 Jul; 285(29):21908-12. PubMed ID: 20508265 [TBL] [Abstract][Full Text] [Related]
63. Biochemical disclosure of the mycolate outer membrane of Corynebacterium glutamicum. Marchand CH; Salmeron C; Bou Raad R; Méniche X; Chami M; Masi M; Blanot D; Daffé M; Tropis M; Huc E; Le Maréchal P; Decottignies P; Bayan N J Bacteriol; 2012 Feb; 194(3):587-97. PubMed ID: 22123248 [TBL] [Abstract][Full Text] [Related]
64. A polyketide synthase catalyzes the last condensation step of mycolic acid biosynthesis in mycobacteria and related organisms. Portevin D; De Sousa-D'Auria C; Houssin C; Grimaldi C; Chami M; Daffé M; Guilhot C Proc Natl Acad Sci U S A; 2004 Jan; 101(1):314-9. PubMed ID: 14695899 [TBL] [Abstract][Full Text] [Related]
65. [Mycolic acids--biological role and potential application in Mycobacterium detection and differentiation]. Kowalski K; Trzepiński P; Druszczyńska M; Boratyński J Postepy Hig Med Dosw (Online); 2014 Apr; 68():350-8. PubMed ID: 24864086 [TBL] [Abstract][Full Text] [Related]
66. The specificity of methyl transferases involved in trans mycolic acid biosynthesis in Mycobacterium tuberculosis and Mycobacterium smegmatis. Schroeder BG; Barry CE Bioorg Chem; 2001 Jun; 29(3):164-77. PubMed ID: 11437392 [TBL] [Abstract][Full Text] [Related]
67. Identification of new components of the RipC-FtsEX cell separation pathway of Corynebacterineae. Lim HC; Sher JW; Rodriguez-Rivera FP; Fumeaux C; Bertozzi CR; Bernhardt TG PLoS Genet; 2019 Aug; 15(8):e1008284. PubMed ID: 31437147 [TBL] [Abstract][Full Text] [Related]
68. Down-regulation of PE11, a cell wall associated esterase, enhances the biofilm growth of Mycobacterium tuberculosis and reduces cell wall virulence lipid levels. Rastogi S; Singh AK; Pant G; Mitra K; Sashidhara KV; Krishnan MY Microbiology (Reading); 2017 Jan; 163(1):52-61. PubMed ID: 28198348 [TBL] [Abstract][Full Text] [Related]
70. Pathway to synthesis and processing of mycolic acids in Mycobacterium tuberculosis. Takayama K; Wang C; Besra GS Clin Microbiol Rev; 2005 Jan; 18(1):81-101. PubMed ID: 15653820 [TBL] [Abstract][Full Text] [Related]
71. A mutant of Mycobacterium smegmatis defective in the biosynthesis of mycolic acids accumulates meromycolates. Liu J; Nikaido H Proc Natl Acad Sci U S A; 1999 Mar; 96(7):4011-6. PubMed ID: 10097154 [TBL] [Abstract][Full Text] [Related]
72. Quantitative lipid composition of cell envelopes of Corynebacterium glutamicum elucidated through reverse micelle extraction. Bansal-Mutalik R; Nikaido H Proc Natl Acad Sci U S A; 2011 Sep; 108(37):15360-5. PubMed ID: 21876124 [TBL] [Abstract][Full Text] [Related]
73. Chapter 2: Biogenesis of the cell wall and other glycoconjugates of Mycobacterium tuberculosis. Kaur D; Guerin ME; Skovierová H; Brennan PJ; Jackson M Adv Appl Microbiol; 2009; 69():23-78. PubMed ID: 19729090 [TBL] [Abstract][Full Text] [Related]
74. Essential role of trehalose in the synthesis and subsequent metabolism of corynomycolic acid in Corynebacterium matruchotii. Shimakata T; Minatogawa Y Arch Biochem Biophys; 2000 Aug; 380(2):331-8. PubMed ID: 10933888 [TBL] [Abstract][Full Text] [Related]
75. Dissecting the Ca Savanagouder M; Mukku RP; Kiran U; Yeruva CV; Nagarajan N; Sharma Y; Raghunand TR FEBS Lett; 2024 Jul; 598(13):1620-1632. PubMed ID: 38697952 [TBL] [Abstract][Full Text] [Related]
76. Effects of EGTA on cell surface structures of Corynebacterium glutamicum. Theresia NM; Aida K; Takada A; Iwai N; Wachi M Arch Microbiol; 2018 Mar; 200(2):281-289. PubMed ID: 29075867 [TBL] [Abstract][Full Text] [Related]
77. Exposure of mycobacteria to cell wall-inhibitory drugs decreases production of arabinoglycerolipid related to Mycolyl-arabinogalactan-peptidoglycan metabolism. Rombouts Y; Brust B; Ojha AK; Maes E; Coddeville B; Elass-Rochard E; Kremer L; Guerardel Y J Biol Chem; 2012 Mar; 287(14):11060-9. PubMed ID: 22315220 [TBL] [Abstract][Full Text] [Related]
78. Production of the compatible solute α-D-glucosylglycerol by metabolically engineered Corynebacterium glutamicum. Roenneke B; Rosenfeldt N; Derya SM; Novak JF; Marin K; Krämer R; Seibold GM Microb Cell Fact; 2018 Jun; 17(1):94. PubMed ID: 29908566 [TBL] [Abstract][Full Text] [Related]
79. Loss of a mycobacterial gene encoding a reductase leads to an altered cell wall containing beta-oxo-mycolic acid analogs and accumulation of ketones. Bhatt A; Brown AK; Singh A; Minnikin DE; Besra GS Chem Biol; 2008 Sep; 15(9):930-9. PubMed ID: 18804030 [TBL] [Abstract][Full Text] [Related]
80. Targeting the formation of the cell wall core of M. tuberculosis. Barry CE; Crick DC; McNeil MR Infect Disord Drug Targets; 2007 Jun; 7(2):182-202. PubMed ID: 17970228 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]