BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

184 related articles for article (PubMed ID: 17464360)

  • 1. Supercritical carbon dioxide: putting the fizz into biomaterials.
    Barry JJ; Silva MM; Popov VK; Shakesheff KM; Howdle SM
    Philos Trans A Math Phys Eng Sci; 2006 Jan; 364(1838):249-61. PubMed ID: 17464360
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Particle seeding enhances interconnectivity in polymeric scaffolds foamed using supercritical CO(2).
    Collins NJ; Bridson RH; Leeke GA; Grover LM
    Acta Biomater; 2010 Mar; 6(3):1055-60. PubMed ID: 19671454
    [TBL] [Abstract][Full Text] [Related]  

  • 3. In vitro study of hydroxyapatite-based photocurable polymer composites prepared by laser stereolithography and supercritical fluid extraction.
    Barry JJ; Evseev AV; Markov MA; Upton CE; Scotchford CA; Popov VK; Howdle SM
    Acta Biomater; 2008 Nov; 4(6):1603-10. PubMed ID: 18595787
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Formation of nanoparticles of a hydrophilic drug using supercritical carbon dioxide and microencapsulation for sustained release.
    Thote AJ; Gupta RB
    Nanomedicine; 2005 Mar; 1(1):85-90. PubMed ID: 17292062
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Dexamethasone-loaded scaffolds prepared by supercritical-assisted phase inversion.
    Duarte AR; Mano JF; Reis RL
    Acta Biomater; 2009 Jul; 5(6):2054-62. PubMed ID: 19328753
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Putting the fizz into chemistry: applications of supercritical carbon dioxide in tissue engineering, drug delivery and synthesis of novel block copolymers.
    Tai H; Popov VK; Shakesheff KM; Howdle SM
    Biochem Soc Trans; 2007 Jun; 35(Pt 3):516-21. PubMed ID: 17511642
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A biocompatible tissue scaffold produced by supercritical fluid processing for cartilage tissue engineering.
    Kim SH; Jung Y; Kim SH
    Tissue Eng Part C Methods; 2013 Mar; 19(3):181-8. PubMed ID: 22834918
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Scaffold for tissue engineering fabricated by non-isothermal supercritical carbon dioxide foaming of a highly crystalline polyester.
    Gualandi C; White LJ; Chen L; Gross RA; Shakesheff KM; Howdle SM; Scandola M
    Acta Biomater; 2010 Jan; 6(1):130-6. PubMed ID: 19619678
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Self-assembly of (perfluoroalkyl)alkanes on a substrate surface from solutions in supercritical carbon dioxide.
    Gallyamov MO; Mourran A; Tartsch B; Vinokur RA; Nikitin LN; Khokhlov AR; Schaumburg K; Möller M
    Phys Chem Chem Phys; 2006 Jun; 8(22):2642-9. PubMed ID: 16738719
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Biomaterials and Supercritical Fluid Technologies: Which Perspectives to Fabricate Artificial Extracellular Matrix?
    Porta GD; Reverchon E; Maffulli N
    Curr Pharm Des; 2017; 23(26):3759-3771. PubMed ID: 28714408
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Supercritical CO2 fluid-foaming of polymers to increase porosity: a method to improve the mechanical and biocompatibility characteristics for use as a potential alternative to allografts in impaction bone grafting?
    Tayton E; Purcell M; Aarvold A; Smith JO; Kalra S; Briscoe A; Shakesheff K; Howdle SM; Dunlop DG; Oreffo RO
    Acta Biomater; 2012 May; 8(5):1918-27. PubMed ID: 22307029
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Biodegradable semi-crystalline comb polyesters influence the microsphere production by means of a supercritical fluid extraction technique (ASES).
    Breitenbach A; Mohr D; Kissel T
    J Control Release; 2000 Jan; 63(1-2):53-68. PubMed ID: 10640580
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Composite fibrous biomaterials for tissue engineering obtained using a supercritical CO2 antisolvent process.
    García-González CA; Vega-González A; López-Periago AM; Subra-Paternault P; Domingo C
    Acta Biomater; 2009 May; 5(4):1094-103. PubMed ID: 19041288
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Biodegradable HA-PLA 3-D porous scaffolds: effect of nano-sized filler content on scaffold properties.
    Kothapalli CR; Shaw MT; Wei M
    Acta Biomater; 2005 Nov; 1(6):653-62. PubMed ID: 16701846
    [TBL] [Abstract][Full Text] [Related]  

  • 15. [Fabrication of porous poly lactic acid-bone matrix gelatin composite bioactive material and its osteoinductive activity].
    Zhang Y; Li B; Li J
    Zhongguo Xiu Fu Chong Jian Wai Ke Za Zhi; 2007 Feb; 21(2):135-9. PubMed ID: 17357459
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The effect of processing variables on morphological and mechanical properties of supercritical CO2 foamed scaffolds for tissue engineering.
    White LJ; Hutter V; Tai H; Howdle SM; Shakesheff KM
    Acta Biomater; 2012 Jan; 8(1):61-71. PubMed ID: 21855663
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Biodegradable particle formation for drug and gene delivery using supercritical fluid and dense gas.
    Mishima K
    Adv Drug Deliv Rev; 2008 Feb; 60(3):411-32. PubMed ID: 18061302
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A method for solvent-free fabrication of porous polymer using solid-state foaming and ultrasound for tissue engineering applications.
    Wang X; Li W; Kumar V
    Biomaterials; 2006 Mar; 27(9):1924-9. PubMed ID: 16219346
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Porous methacrylate scaffolds: supercritical fluid fabrication and in vitro chondrocyte responses.
    Barry JJ; Gidda HS; Scotchford CA; Howdle SM
    Biomaterials; 2004 Aug; 25(17):3559-68. PubMed ID: 15020130
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Dexamethasone-loaded poly(ε-caprolactone)/silica nanoparticles composites prepared by supercritical CO2 foaming/mixing and deposition.
    de Matos MB; Piedade AP; Alvarez-Lorenzo C; Concheiro A; Braga ME; de Sousa HC
    Int J Pharm; 2013 Nov; 456(2):269-81. PubMed ID: 24008084
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.