These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

131 related articles for article (PubMed ID: 17464938)

  • 1. Proteomic investigation of glucose metabolism in the butyrate-producing gut anaerobe Fusobacterium varium.
    Potrykus J; Mahaney B; White RL; Bearne SL
    Proteomics; 2007 Jun; 7(11):1839-53. PubMed ID: 17464938
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Proteomic investigation of amino acid catabolism in the indigenous gut anaerobe Fusobacterium varium.
    Potrykus J; White RL; Bearne SL
    Proteomics; 2008 Jul; 8(13):2691-703. PubMed ID: 18546150
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Glutamate racemization and catabolism in Fusobacterium varium.
    Ramezani M; Resmer KL; White RL
    FEBS J; 2011 Jul; 278(14):2540-51. PubMed ID: 21575137
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Metabolic footprinting of the anaerobic bacterium Fusobacterium varium using 1H NMR spectroscopy.
    Resmer KL; White RL
    Mol Biosyst; 2011 Jul; 7(7):2220-7. PubMed ID: 21547305
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Reduction of Fumarate to Succinate Mediated by Fusobacterium varium.
    McDonald NC; White RL
    Appl Biochem Biotechnol; 2019 Jan; 187(1):163-175. PubMed ID: 29911265
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Pathways of glutamate catabolism among Fusobacterium species.
    Gharbia SE; Shah HN
    J Gen Microbiol; 1991 May; 137(5):1201-6. PubMed ID: 1678005
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Stable-isotope studies of glutamate catabolism in Fusobacterium nucleatum.
    White RL; Ramezani M; Gharbia SE; Seth R; Doherty-Kirby AL; Shah HN
    Biotechnol Appl Biochem; 1995 Dec; 22(3):385-96. PubMed ID: 8573293
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The behaviour of Fusobacterium nucleatum chemostat-grown in glucose- and amino acid-based chemically defined media.
    Rogers AH; Chen J; Zilm PS; Gully NJ
    Anaerobe; 1998 Apr; 4(2):111-6. PubMed ID: 16887630
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Growth and metabolism of marine fish Chinook salmon embryo cells: response to lack of glucose and glutamine.
    Chen J; Sun X; Zhang Y
    Biotechnol Lett; 2005 Mar; 27(6):395-401. PubMed ID: 15834804
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Utilization of D-amino acids by Fusobacterium nucleatum and Fusobacterium varium.
    Ramezani M; MacIntosh SE; White RL
    Amino Acids; 1999; 17(2):185-93. PubMed ID: 10524276
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Glucose metabolism in the antibiotic producing actinomycete Nonomuraea sp. ATCC 39727.
    Gunnarsson N; Bruheim P; Nielsen J
    Biotechnol Bioeng; 2004 Dec; 88(5):652-63. PubMed ID: 15472928
    [TBL] [Abstract][Full Text] [Related]  

  • 12. [Interrelation between the pathways of isoprenoid biosynthesis and carbon source catabolism in anaerobic and facultatively anaerobic bacteria].
    Trutko SM; Shcherbakova VA; Ivanova IV; Lysanskaia VIa; Arkhipova OV; Chuvil'skaia NA; Baskunov BP; Ostrovskiĭ DN; Akimenko VK
    Mikrobiologiia; 2008; 77(3):303-10. PubMed ID: 18683645
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Two pathways of glutamate fermentation by anaerobic bacteria.
    Buckel W; Barker HA
    J Bacteriol; 1974 Mar; 117(3):1248-60. PubMed ID: 4813895
    [TBL] [Abstract][Full Text] [Related]  

  • 14. [Effects of exogenous factors on the activity of enzymes involved in carbon metabolism in thermoacidophilic bacteria of the genus Sulfobacillus].
    Krasil'nikova EN; Tsaplina IA; Zakharchuk LM; Bogdanova TI
    Prikl Biokhim Mikrobiol; 2001; 37(4):418-23. PubMed ID: 11530664
    [TBL] [Abstract][Full Text] [Related]  

  • 15. [Quantitation of intestinal Fusobacterium and butyrate- producing bacteria in patients with colorectal adenomas and colorectal cancer].
    Miao H; Wu N; Luan C; Yang X; Zhang R; Lv N; Zhu B
    Wei Sheng Wu Xue Bao; 2014 Oct; 54(10):1228-34. PubMed ID: 25803901
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Exploring membrane and cytoplasm proteomic responses of Alkalimonas amylolytica N10 to different external pHs with combination strategy of de novo peptide sequencing.
    Wang Q; Han H; Xue Y; Qian Z; Meng B; Peng F; Wang Z; Tong W; Zhou C; Wang Q; Guo Y; Li G; Liu S; Ma Y
    Proteomics; 2009 Mar; 9(5):1254-73. PubMed ID: 19253282
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Glyceraldehyde-3-phosphate ferredoxin oxidoreductase (GAPOR) and nonphosphorylating glyceraldehyde-3-phosphate dehydrogenase (GAPN), key enzymes of the respective modified Embden-Meyerhof pathways in the hyperthermophilic crenarchaeota Pyrobaculum aerophilum and Aeropyrum pernix.
    Reher M; Gebhard S; Schönheit P
    FEMS Microbiol Lett; 2007 Aug; 273(2):196-205. PubMed ID: 17559573
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Fusobacterium polysaccharolyticum sp.nov., a gram-negative rod from the rumen that produces butyrate and ferments cellulose and starch.
    van Gylswyk NO
    J Gen Microbiol; 1980 Jan; 116(1):157-63. PubMed ID: 7365452
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Limitations to the comparative proteomic analysis of thrombopoietin producing Chinese hamster ovary cells treated with sodium butyrate.
    Baik JY; Joo EJ; Kim YH; Lee GM
    J Biotechnol; 2008 Feb; 133(4):461-8. PubMed ID: 18164778
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The proteomic response of Saccharomyces cerevisiae in very high glucose conditions with amino acid supplementation.
    Pham TK; Wright PC
    J Proteome Res; 2008 Nov; 7(11):4766-74. PubMed ID: 18808174
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.