These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

106 related articles for article (PubMed ID: 17465582)

  • 1. Mechanism and modeling of nanorod formation from nanodots.
    Ethayaraja M; Bandyopadhyaya R
    Langmuir; 2007 May; 23(11):6418-23. PubMed ID: 17465582
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Self-organization of Te nanorods into V-shaped assemblies: a Brownian dynamics study and experimental insights.
    Shanbhag S; Tang Z; Kotov NA
    ACS Nano; 2007 Sep; 1(2):126-32. PubMed ID: 19206528
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Population balance models and Monte Carlo simulation for nanoparticle formation in water-in-oil microemulsions: implications for CdS synthesis.
    Ethayaraja M; Bandyopadhyaya R
    J Am Chem Soc; 2006 Dec; 128(51):17102-13. PubMed ID: 17177463
    [TBL] [Abstract][Full Text] [Related]  

  • 4. An analytical expression for the van der Waals interaction in oriented-attachment growth: a spherical nanoparticle and a growing cylindrical nanorod.
    He W; Lin J; Wang B; Tuo S; Pantelides ST; Dickerson JH
    Phys Chem Chem Phys; 2012 Apr; 14(13):4548-53. PubMed ID: 22361953
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The growth mechanism and optical properties of ultralong ZnO nanorod arrays with a high aspect ratio by a preheating hydrothermal method.
    Qiu J; Li X; He W; Park SJ; Kim HK; Hwang YH; Lee JH; Kim YD
    Nanotechnology; 2009 Apr; 20(15):155603. PubMed ID: 19420551
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Quantitative Description of Nonhomogeneous Mass Distribution in Controlled Aggregation and Fragmentation of Hydrated Colloids.
    Widmaier J; Pefferkorn E
    J Colloid Interface Sci; 1998 Jul; 203(2):402-18. PubMed ID: 9705779
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Kinetics of gel formation in dilute dispersions with strong attractive particle interactions.
    Sandkühler P; Sefcik J; Morbidelli M
    Adv Colloid Interface Sci; 2004 May; 108-109():133-43. PubMed ID: 15072936
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Computational modeling of nanorod growth.
    Grochola G; Snook IK; Russo SP
    J Chem Phys; 2007 Nov; 127(19):194707. PubMed ID: 18035898
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Silica nanoparticle formation in the TPAOH-TEOS-H2O system: a population balance model.
    Provis JL; Vlachos DG
    J Phys Chem B; 2006 Feb; 110(7):3098-108. PubMed ID: 16494315
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A multi-rate kinetic model for spontaneous oriented attachment of CdS nanorods.
    Gunning RD; O'Sullivan C; Ryan KM
    Phys Chem Chem Phys; 2010 Oct; 12(39):12430-5. PubMed ID: 20714581
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Mechanism of nanoparticle formation in self-assembled colloidal templates: population balance model and Monte Carlo simulation.
    Ethayaraja M; Dutta K; Bandyopadhyaya R
    J Phys Chem B; 2006 Aug; 110(33):16471-81. PubMed ID: 16913778
    [TBL] [Abstract][Full Text] [Related]  

  • 12. pH-induced simultaneous synthesis and self-assembly of 3D layered beta-FeOOH nanorods.
    Fang XL; Li Y; Chen C; Kuang Q; Gao XZ; Xie ZX; Xie SY; Huang RB; Zheng LS
    Langmuir; 2010 Feb; 26(4):2745-50. PubMed ID: 19957938
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Experimental investigation of selective colloidal interactions controlled by shape, surface roughness, and steric layers.
    Badaire S; Cottin-Bizonne C; Stroock AD
    Langmuir; 2008 Oct; 24(20):11451-63. PubMed ID: 18788764
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Synthesis and field emission characteristics of bilayered ZnO nanorod array prepared by chemical reaction.
    Zhang H; Yang D; Ma X; Que D
    J Phys Chem B; 2005 Sep; 109(36):17055-9. PubMed ID: 16853174
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Low-temperature growth of ZnO nanorods by chemical bath deposition.
    Yi SH; Choi SK; Jang JM; Kim JA; Jung WG
    J Colloid Interface Sci; 2007 Sep; 313(2):705-10. PubMed ID: 17570384
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Efficiency of energy transfer from organic dye molecules to CdSe-ZnS nanocrystals: nanorods versus nanodots.
    Artemyev M; Ustinovich E; Nabiev I
    J Am Chem Soc; 2009 Jun; 131(23):8061-5. PubMed ID: 19507903
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Oriented attachment kinetics for ligand capped nanocrystals: coarsening of thiol-PbS nanoparticles.
    Zhang J; Wang Y; Zheng J; Huang F; Chen D; Lan Y; Ren G; Lin Z; Wang C
    J Phys Chem B; 2007 Feb; 111(6):1449-54. PubMed ID: 17286356
    [TBL] [Abstract][Full Text] [Related]  

  • 18. One-step preparation of single-crystalline beta-MnO2 nanotubes.
    Zheng D; Sun S; Fan W; Yu H; Fan C; Cao G; Yin Z; Song X
    J Phys Chem B; 2005 Sep; 109(34):16439-43. PubMed ID: 16853090
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A multistep oriented attachment kinetics: coarsening of ZnS nanoparticle in concentrated NaOH.
    Zhang J; Lin Z; Lan Y; Ren G; Chen D; Huang F; Hong M
    J Am Chem Soc; 2006 Oct; 128(39):12981-7. PubMed ID: 17002395
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Aspect ratio dependence of the enhanced fluorescence intensity of gold nanorods: experimental and simulation study.
    Eustis S; El-Sayed M
    J Phys Chem B; 2005 Sep; 109(34):16350-6. PubMed ID: 16853078
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.