BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

108 related articles for article (PubMed ID: 17465760)

  • 1. Biocompatibility and the efficacy of medical implants.
    Shard AG; Tomlins PE
    Regen Med; 2006 Nov; 1(6):789-800. PubMed ID: 17465760
    [TBL] [Abstract][Full Text] [Related]  

  • 2. An in vitro multi-parametric approach to measuring the effect of implant surface characteristics on cell behaviour.
    Davies JT; Lam J; Tomlins PE; Marshall D
    Biomed Mater; 2010 Feb; 5(1):15002. PubMed ID: 20057015
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Molecularly engineered p(HEMA)-based hydrogels for implant biochip biocompatibility.
    Abraham S; Brahim S; Ishihara K; Guiseppi-Elie A
    Biomaterials; 2005 Aug; 26(23):4767-78. PubMed ID: 15763256
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Bootstrap analysis of the relation between initial adhesive events and long-term cellular functions of human osteoblasts cultured on biocompatible metallic substrates.
    Bigerelle M; Anselme K
    Acta Biomater; 2005 Sep; 1(5):499-510. PubMed ID: 16701830
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Biointerfaces promoting tissue healing.
    Petrie TA; Reyes CD; Raynor JE; Burns KL; Collard DM; GarcĂ­a AJ
    J Musculoskelet Neuronal Interact; 2007; 7(4):332. PubMed ID: 18094498
    [No Abstract]   [Full Text] [Related]  

  • 6. Biocompatibility of sorbitol-containing polyesters. Part I: Synthesis, surface analysis and cell response in vitro.
    Mei Y; Kumar A; Gao W; Gross R; Kennedy SB; Washburn NR; Amis EJ; Elliott JT
    Biomaterials; 2004 Aug; 25(18):4195-201. PubMed ID: 15046909
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Modern biomaterials: a review - bulk properties and implications of surface modifications.
    Roach P; Eglin D; Rohde K; Perry CC
    J Mater Sci Mater Med; 2007 Jul; 18(7):1263-77. PubMed ID: 17443395
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Bioactivation of inert alumina ceramics by hydroxylation.
    Fischer H; Niedhart C; Kaltenborn N; Prange A; Marx R; Niethard FU; Telle R
    Biomaterials; 2005 Nov; 26(31):6151-7. PubMed ID: 15927249
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Thermal and chemical modification of titanium-aluminum-vanadium implant materials: effects on surface properties, glycoprotein adsorption, and MG63 cell attachment.
    MacDonald DE; Rapuano BE; Deo N; Stranick M; Somasundaran P; Boskey AL
    Biomaterials; 2004 Jul; 25(16):3135-46. PubMed ID: 14980408
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Osteoblast attachment to a textured surface in the absence of exogenous adhesion proteins.
    Mata A; Su X; Fleischman AJ; Roy S; Banks BA; Miller SK; Midura RJ
    IEEE Trans Nanobioscience; 2003 Dec; 2(4):287-94. PubMed ID: 15376920
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Bioengineering the skin-implant interface: the use of regenerative therapies in implanted devices.
    Peramo A; Marcelo CL
    Ann Biomed Eng; 2010 Jun; 38(6):2013-31. PubMed ID: 20140520
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Fast setting calcium phosphate-chitosan scaffold: mechanical properties and biocompatibility.
    Xu HH; Simon CG
    Biomaterials; 2005 Apr; 26(12):1337-48. PubMed ID: 15482821
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Interaction of cells with decellularized biological materials.
    Wilhelmi M; Giere B; Harder M
    Adv Biochem Eng Biotechnol; 2012; 126():105-16. PubMed ID: 21989486
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The role of materials biocompatibility for functional electrical stimulation applications.
    Plenk H
    Artif Organs; 2011 Mar; 35(3):237-41. PubMed ID: 21401666
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Cell adhesion to biomaterials: correlations between surface charge, surface roughness, adsorbed protein, and cell morphology.
    Hallab NJ; Bundy KJ; O'Connor K; Clark R; Moses RL
    J Long Term Eff Med Implants; 1995; 5(3):209-31. PubMed ID: 10172729
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Cell attachment-detachment control on temperature-responsive thin surfaces for novel tissue engineering.
    Kumashiro Y; Yamato M; Okano T
    Ann Biomed Eng; 2010 Jun; 38(6):1977-88. PubMed ID: 20387117
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Lotus-leaf-like topography predominates over adsorbed ECM proteins in poly(3-hydroxybutyrate-co-3-hydroxyhexanoate) surface/cell interactions.
    Zheng J; Li D; Yuan L; Liu X; Chen H
    ACS Appl Mater Interfaces; 2013 Jun; 5(12):5882-7. PubMed ID: 23721174
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Preparation of scaffolds from human hair proteins for tissue-engineering applications.
    Verma V; Verma P; Ray P; Ray AR
    Biomed Mater; 2008 Jun; 3(2):025007. PubMed ID: 18458372
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The influence of micro-topography on cellular response and the implications for silicone implants.
    von Recum AF; van Kooten TG
    J Biomater Sci Polym Ed; 1995; 7(2):181-98. PubMed ID: 7654632
    [TBL] [Abstract][Full Text] [Related]  

  • 20. PolyNaSS bioactivation of LARS artificial ligament promotes human ligament fibroblast colonisation in vitro.
    Lessim S; Migonney V; Thoreux P; Lutomski D; Changotade S
    Biomed Mater Eng; 2013; 23(4):289-97. PubMed ID: 23798650
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.