These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

138 related articles for article (PubMed ID: 17465835)

  • 21. A nonhuman primate model for urinary bladder regeneration using autologous sources of bone marrow-derived mesenchymal stem cells.
    Sharma AK; Bury MI; Marks AJ; Fuller NJ; Meisner JW; Tapaskar N; Halliday LC; Matoka DJ; Cheng EY
    Stem Cells; 2011 Feb; 29(2):241-50. PubMed ID: 21732482
    [TBL] [Abstract][Full Text] [Related]  

  • 22. [Research progress of cell-scaffold complex in tendon tissue engineering].
    Zhu Y; Li M
    Zhongguo Xiu Fu Chong Jian Wai Ke Za Zhi; 2013 Apr; 27(4):481-5. PubMed ID: 23757879
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Stem cells for tissue engineering of myocardial constructs.
    Wu KH; Mo XM; Liu YL; Zhang YS; Han ZC
    Ageing Res Rev; 2007 Dec; 6(4):289-301. PubMed ID: 17981518
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Human embryoid body-derived stem cells in tissue engineering-enhanced migration in co-culture with bladder smooth muscle and urothelium.
    Frimberger D; Morales N; Gearhart JD; Gearhart JP; Lakshmanan Y
    Urology; 2006 Jun; 67(6):1298-303. PubMed ID: 16750247
    [TBL] [Abstract][Full Text] [Related]  

  • 25. A bilayered hybrid microfibrous PLGA--acellular matrix scaffold for hollow organ tissue engineering.
    Horst M; Madduri S; Milleret V; Sulser T; Gobet R; Eberli D
    Biomaterials; 2013 Feb; 34(5):1537-45. PubMed ID: 23177021
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Growth of bone marrow stromal cells on small intestinal submucosa: an alternative cell source for tissue engineered bladder.
    Zhang Y; Lin HK; Frimberger D; Epstein RB; Kropp BP
    BJU Int; 2005 Nov; 96(7):1120-5. PubMed ID: 16225540
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Neo-regeneration of urinary bladder: a desired metaplasia of autologous membrane from rectosigmoid colon containing stem cells of intestinal crypts.
    Matapurkar BG; Bhargave A; Rehan HS; Mondal AK; Ramteke VK
    Indian J Exp Biol; 2010 Nov; 48(11):1083-93. PubMed ID: 21117447
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Bladder tissue engineering through nanotechnology.
    Harrington DA; Sharma AK; Erickson BA; Cheng EY
    World J Urol; 2008 Aug; 26(4):315-22. PubMed ID: 18536880
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Outlines on nanotechnologies applied to bladder tissue engineering.
    Alberti C
    G Chir; 2012; 33(6-7):234-5. PubMed ID: 22958806
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Tissue engineering approaches for regenerative dentistry.
    Galler KM; D'Souza RN
    Regen Med; 2011 Jan; 6(1):111-24. PubMed ID: 21175291
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Stem cells for tendon tissue engineering and regeneration.
    Yin Z; Chen X; Chen JL; Ouyang HW
    Expert Opin Biol Ther; 2010 May; 10(5):689-700. PubMed ID: 20367125
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Stem cells for regeneration of urological structures.
    Becker C; Jakse G
    Eur Urol; 2007 May; 51(5):1217-28. PubMed ID: 17254699
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Bioengineering organs using small intestinal submucosa scaffolds: in vivo tissue-engineering technology.
    Kropp BP; Cheng EY
    J Endourol; 2000 Feb; 14(1):59-62. PubMed ID: 10735574
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Tissue-engineered small intestine and stomach form from autologous tissue in a preclinical large animal model.
    Sala FG; Kunisaki SM; Ochoa ER; Vacanti J; Grikscheit TC
    J Surg Res; 2009 Oct; 156(2):205-12. PubMed ID: 19665143
    [TBL] [Abstract][Full Text] [Related]  

  • 35. The use of glandular-derived stem cells to improve vascularization in scaffold-mediated dermal regeneration.
    EgaƱa JT; Danner S; Kremer M; Rapoport DH; Lohmeyer JA; Dye JF; Hopfner U; Lavandero S; Kruse C; Machens HG
    Biomaterials; 2009 Oct; 30(30):5918-26. PubMed ID: 19651436
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Contrasting effects of vasculogenic induction upon biaxial bioreactor stimulation of mesenchymal stem cells and endothelial progenitor cells cocultures in three-dimensional scaffolds under in vitro and in vivo paradigms for vascularized bone tissue engineering.
    Liu Y; Teoh SH; Chong MS; Yeow CH; Kamm RD; Choolani M; Chan JK
    Tissue Eng Part A; 2013 Apr; 19(7-8):893-904. PubMed ID: 23102089
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Tissue engineering technologies: just a quick note about transplantation of bioengineered donor trachea and augmentation cystoplasty by de novo engineered bladder tissue.
    Alberti C
    G Chir; 2009; 30(11-12):514-9. PubMed ID: 20109384
    [TBL] [Abstract][Full Text] [Related]  

  • 38. In vitro comparative evaluation of recombinant growth factors for tissue engineering of bladder in patients with neurogenic bladder.
    Yang B; Zhou L; Peng B; Sun Z; Dai Y; Zheng J
    J Surg Res; 2014 Jan; 186(1):63-72. PubMed ID: 24095026
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Applications of gene therapy and adult stem cells in bone bioengineering.
    Kimelman N; Pelled G; Gazit Z; Gazit D
    Regen Med; 2006 Jul; 1(4):549-61. PubMed ID: 17465849
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Urinary bladder smooth muscle regeneration utilizing bone marrow derived mesenchymal stem cell seeded elastomeric poly(1,8-octanediol-co-citrate) based thin films.
    Sharma AK; Hota PV; Matoka DJ; Fuller NJ; Jandali D; Thaker H; Ameer GA; Cheng EY
    Biomaterials; 2010 Aug; 31(24):6207-17. PubMed ID: 20488535
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.