These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

165 related articles for article (PubMed ID: 17466023)

  • 1. Ecophysiology of mycolic acid-containing Actinobacteria (Mycolata) in activated sludge foams.
    Kragelund C; Remesova Z; Nielsen JL; Thomsen TR; Eales K; Seviour R; Wanner J; Nielsen PH
    FEMS Microbiol Ecol; 2007 Jul; 61(1):174-84. PubMed ID: 17466023
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Improved permeabilization protocols for fluorescence in situ hybridization (FISH) of mycolic-acid-containing bacteria found in foams.
    Carr EL; Eales K; Soddell J; Seviour RJ
    J Microbiol Methods; 2005 Apr; 61(1):47-54. PubMed ID: 15676195
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Full-scale control of Mycolata foam by FEX-120 addition.
    Kragelund C; Nilsson B; Eskilsson K; Bøgh AM; Nielsen PH
    Water Sci Technol; 2010; 61(10):2443-50. PubMed ID: 20453316
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A universal threshold concept for hydrophobic mycolata in activated sludge foaming.
    Davenport RJ; Pickering RL; Goodhead AK; Curtis TP
    Water Res; 2008 Jul; 42(13):3446-54. PubMed ID: 18486181
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Quantitative use of fluorescent in situ hybridization to examine relationships between mycolic acid-containing actinomycetes and foaming in activated sludge plants.
    Davenport RJ; Curtis TP; Goodfellow M; Stainsby FM; Bingley M
    Appl Environ Microbiol; 2000 Mar; 66(3):1158-66. PubMed ID: 10698786
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Are filamentous mycolata important in foaming?
    Davenport RJ; Curtis TP
    Water Sci Technol; 2002; 46(1-2):529-33. PubMed ID: 12216682
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The in situ physiology of Skermania piniformis in foams in Australian activated sludge plants.
    Eales KL; Nielsen JL; Seviour EM; Nielsen PH; Seviour RJ
    Environ Microbiol; 2006 Oct; 8(10):1712-20. PubMed ID: 16958752
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Phylogeny, physiology and distribution of 'Candidatus Microthrix calida', a new Microthrix species isolated from industrial activated sludge wastewater treatment plants.
    Levantesi C; Rossetti S; Thelen K; Kragelund C; Krooneman J; Eikelboom D; Nielsen PH; Tandoi V
    Environ Microbiol; 2006 Sep; 8(9):1552-63. PubMed ID: 16913916
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Role of filamentous microorganisms in activated sludge foaming: relationship of mycolata levels to foaming initiation and stability.
    de los Reyes FL; Raskin L
    Water Res; 2002 Jan; 36(2):445-59. PubMed ID: 11827351
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Identity, abundance and ecophysiology of filamentous Chloroflexi species present in activated sludge treatment plants.
    Kragelund C; Levantesi C; Borger A; Thelen K; Eikelboom D; Tandoi V; Kong Y; van der Waarde J; Krooneman J; Rossetti S; Thomsen TR; Nielsen PH
    FEMS Microbiol Ecol; 2007 Mar; 59(3):671-82. PubMed ID: 17381520
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Substrate uptake by Gordonia amarae in activated sludge foams by FISH-MAR.
    Carr EL; Eales KL; Seviour RJ
    Water Sci Technol; 2006; 54(1):39-45. PubMed ID: 16898135
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Biological control of problematic bacterial populations causing foaming in activated sludge wastewater treatment plants-phage therapy and beyond.
    Petrovski S; Batinovic S; Rose JJA; Seviour RJ
    Lett Appl Microbiol; 2022 Oct; 75(4):776-784. PubMed ID: 35598184
    [TBL] [Abstract][Full Text] [Related]  

  • 13. An examination of the mechanisms for stable foam formation in activated sludge systems.
    Petrovski S; Dyson ZA; Quill ES; McIlroy SJ; Tillett D; Seviour RJ
    Water Res; 2011 Feb; 45(5):2146-54. PubMed ID: 21239035
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Ecophysiology of the filamentous Alphaproteobacterium Meganema perideroedes in activated sludge.
    Kragelund C; Nielsen JL; Thomsen TR; Nielsen PH
    FEMS Microbiol Ecol; 2005 Sep; 54(1):111-22. PubMed ID: 16329977
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Microbial community structures in foaming and nonfoaming full-scale wastewater treatment plants.
    de los Reyes FL; Rothauszky D; Raskin L
    Water Environ Res; 2002; 74(5):437-49. PubMed ID: 12469948
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Analysis of the phylogenetic diversity of estrone-degrading bacteria in activated sewage sludge using microautoradiography-fluorescence in situ hybridization.
    Zang K; Kurisu F; Kasuga I; Furumai H; Yagi O
    Syst Appl Microbiol; 2008 Aug; 31(3):206-14. PubMed ID: 18513907
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Isolation and characterization of bacteriophage SPI1, which infects the activated-sludge-foaming bacterium Skermania piniformis.
    Dyson ZA; Tucci J; Seviour RJ; Petrovski S
    Arch Virol; 2016 Jan; 161(1):149-58. PubMed ID: 26459285
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Immunomagnetic separation of scum-forming bacteria using polyclonal antibody that recognizes mycolic acids.
    Morisada S; Miyata N; Iwahori K
    J Microbiol Methods; 2002 Oct; 51(2):141-8. PubMed ID: 12133606
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Production of anti-Gordonia amarae mycolic acid polyclonal antibody for detection of mycolic acid-containing bacteria in activated sludge foam.
    Iwahori K; Miyata N; Takata N; Morisada S; Mochizuki T
    J Biosci Bioeng; 2001; 92(5):417-22. PubMed ID: 16233121
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Fighting foam with phages?
    Thomas JA; Soddell JA; Kurtböke DI
    Water Sci Technol; 2002; 46(1-2):511-8. PubMed ID: 12216679
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.