These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

272 related articles for article (PubMed ID: 17466061)

  • 1. Molecular characterisation of the early response in pigs to experimental infection with Actinobacillus pleuropneumoniae using cDNA microarrays.
    Hedegaard J; Skovgaard K; Mortensen S; Sørensen P; Jensen TK; Hornshøj H; Bendixen C; Heegaard PM
    Acta Vet Scand; 2007 Apr; 49(1):11. PubMed ID: 17466061
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Concurrent host-pathogen gene expression in the lungs of pigs challenged with Actinobacillus pleuropneumoniae.
    Brogaard L; Klitgaard K; Heegaard PM; Hansen MS; Jensen TK; Skovgaard K
    BMC Genomics; 2015 May; 16(1):417. PubMed ID: 26018580
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Gene expression profiling of porcine peripheral blood leukocytes after infection with Actinobacillus pleuropneumoniae.
    Moser RJ; Reverter A; Lehnert SA
    Vet Immunol Immunopathol; 2008 Feb; 121(3-4):260-74. PubMed ID: 18054086
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Transcriptional profiling of swine lung tissue after experimental infection with Actinobacillus pleuropneumoniae.
    Zuo Z; Cui H; Li M; Peng X; Zhu L; Zhang M; Ma J; Xu Z; Gan M; Deng J; Li X; Fang J
    Int J Mol Sci; 2013 May; 14(5):10626-60. PubMed ID: 23698783
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Hepatic gene expression changes in pigs experimentally infected with the lung pathogen Actinobacillus pleuropneumoniae as analysed with an innate immunity focused microarray.
    Skovgaard K; Mortensen S; Boye M; Hedegaard J; Heegaard PM
    Innate Immun; 2010 Dec; 16(6):343-53. PubMed ID: 19710094
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Transcriptional profiling at different sites in lungs of pigs during acute bacterial respiratory infection.
    Mortensen S; Skovgaard K; Hedegaard J; Bendixen C; Heegaard PM
    Innate Immun; 2011 Feb; 17(1):41-53. PubMed ID: 19897530
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Host-pathogen interplay at primary infection sites in pigs challenged with Actinobacillus pleuropneumoniae.
    Sassu EL; Frömbling J; Duvigneau JC; Miller I; Müllebner A; Gutiérrez AM; Grunert T; Patzl M; Saalmüller A; von Altrock A; Menzel A; Ganter M; Spergser J; Hewicker-Trautwein M; Verspohl J; Ehling-Schulz M; Hennig-Pauka I
    BMC Vet Res; 2017 Feb; 13(1):64. PubMed ID: 28245826
    [TBL] [Abstract][Full Text] [Related]  

  • 8. PR-39, a porcine host defence peptide, is prominent in mucosa and lymphatic tissue of the respiratory tract in healthy pigs and pigs infected with Actinobacillus pleuropneumoniae.
    Hennig-Pauka I; Koch R; Hoeltig D; Gerlach GF; Waldmann KH; Blecha F; Brauer C; Gasse H
    BMC Res Notes; 2012 Sep; 5():539. PubMed ID: 23016650
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Frequency of Th17 cells correlates with the presence of lung lesions in pigs chronically infected with Actinobacillus pleuropneumoniae.
    Sassu EL; Ladinig A; Talker SC; Stadler M; Knecht C; Stein H; Frömbling J; Richter B; Spergser J; Ehling-Schulz M; Graage R; Hennig-Pauka I; Gerner W
    Vet Res; 2017 Feb; 48(1):4. PubMed ID: 28166835
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Induction of protective immune responses against challenge of Actinobacillus pleuropneumoniae by oral administration with Saccharomyces cerevisiae expressing Apx toxins in pigs.
    Shin MK; Kang ML; Jung MH; Cha SB; Lee WJ; Kim JM; Kim DH; Yoo HS
    Vet Immunol Immunopathol; 2013 Jan; 151(1-2):132-9. PubMed ID: 23206402
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Transcriptional profiling of Actinobacillus pleuropneumoniae during the acute phase of a natural infection in pigs.
    Deslandes V; Denicourt M; Girard C; Harel J; Nash JH; Jacques M
    BMC Genomics; 2010 Feb; 11():98. PubMed ID: 20141640
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Activation of Porcine Alveolar Macrophages by Actinobacillus pleuropneumoniae Lipopolysaccharide via the Toll-Like Receptor 4/NF-κB-Mediated Pathway.
    Li B; Fang J; Zuo Z; Yin S; He T; Yang M; Deng J; Shen L; Ma X; Yu S; Wang Y; Ren Z
    Infect Immun; 2018 Mar; 86(3):. PubMed ID: 29229731
    [No Abstract]   [Full Text] [Related]  

  • 13. Transcriptomic analysis of porcine PBMCs in response to Actinobacillus pleuropneumoniae reveals the dynamic changes of differentially expressed genes related to immuno-inflammatory responses.
    Jiang H; Zhu R; Liu H; Bao C; Liu J; Eltahir A; Langford PR; Sun D; Liu Z; Sun C; Gu J; Han W; Feng X; Lei L
    Antonie Van Leeuwenhoek; 2018 Dec; 111(12):2371-2384. PubMed ID: 30008077
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Kinetics of single and dual infection of pigs with swine influenza virus and Actinobacillus pleuropneumoniae.
    Pomorska-Mól M; Dors A; Kwit K; Kowalczyk A; Stasiak E; Pejsak Z
    Vet Microbiol; 2017 Mar; 201():113-120. PubMed ID: 28284596
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A mixed-model approach for the analysis of cDNA microarray gene expression data from extreme-performing pigs after infection with Actinobacillus pleuropneumoniae.
    Moser RJ; Reverter A; Kerr CA; Beh KJ; Lehnert SA
    J Anim Sci; 2004 May; 82(5):1261-71. PubMed ID: 15144065
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Infection dynamics and acute phase response of an Actinobacillus pleuropneumoniae field isolate of moderate virulence in pigs.
    Gómez-Laguna J; Islas A; Muñoz D; Ruiz A; Villamil A; Carrasco L; Quezada M
    Vet Microbiol; 2014 Oct; 173(3-4):332-9. PubMed ID: 25201629
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Transcript profiling of the immunological interactions between Actinobacillus pleuropneumoniae serotype 7 and the host by dual RNA-seq.
    Li P; Xu Z; Sun X; Yin Y; Fan Y; Zhao J; Mao X; Huang J; Yang F; Zhu L
    BMC Microbiol; 2017 Sep; 17(1):193. PubMed ID: 28899359
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Transcriptional profiling of hilar nodes from pigs after experimental infection with Actinobacillus pleuropneumoniae.
    Yu S; Zuo Z; Cui H; Li M; Peng X; Zhu L; Zhang M; Li X; Xu Z; Gan M; Deng J; Fang J; Ma J; Su S; Wang Y; Shen L; Ma X; Ren Z; Wu B; Hu Y
    Int J Mol Sci; 2013 Nov; 14(12):23516-32. PubMed ID: 24351863
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The Adh adhesin domain is required for trimeric autotransporter Apa1-mediated Actinobacillus pleuropneumoniae adhesion, autoaggregation, biofilm formation and pathogenicity.
    Wang L; Qin W; Yang S; Zhai R; Zhou L; Sun C; Pan F; Ji Q; Wang Y; Gu J; Feng X; Du C; Han W; Langford PR; Lei L
    Vet Microbiol; 2015 May; 177(1-2):175-83. PubMed ID: 25818350
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Evaluation of the predictive value of tonsil examination by bacteriological culture for detecting positive lung colonization status of nursery pigs exposed to Actinobacillus pleuropneumoniae by experimental aerosol infection.
    Hoeltig D; Nietfeld F; Strutzberg-Minder K; Rohde J
    BMC Vet Res; 2018 Jun; 14(1):211. PubMed ID: 29954395
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.