BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

184 related articles for article (PubMed ID: 17466255)

  • 1. Isolation, purification and characterization of histidino-threosidine, a novel Maillard reaction protein crosslink from threose, lysine and histidine.
    Dai Z; Nemet I; Shen W; Monnier VM
    Arch Biochem Biophys; 2007 Jul; 463(1):78-88. PubMed ID: 17466255
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Protein modification by the degradation products of ascorbate: formation of a novel pyrrole from the Maillard reaction of L-threose with proteins.
    Nagaraj RH; Monnier VM
    Biochim Biophys Acta; 1995 Nov; 1253(1):75-84. PubMed ID: 7492603
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Isolation and characterization of a new advanced glycation endproduct of dehydroascorbic acid and lysine.
    Argirov OK; Lin B; Olesen P; Ortwerth BJ
    Biochim Biophys Acta; 2003 Mar; 1620(1-3):235-44. PubMed ID: 12595094
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Ascorbic acid glycation: the reactions of L-threose in lens tissue.
    Ortwerth BJ; Speaker JA; Prabhakaram M; Lopez MG; Li EY; Feather MS
    Exp Eye Res; 1994 Jun; 58(6):665-74. PubMed ID: 7925706
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Characterization and detection of lysine-arginine cross-links derived from dehydroascorbic acid.
    Reihl O; Lederer MO; Schwack W
    Carbohydr Res; 2004 Feb; 339(3):483-91. PubMed ID: 15013385
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Structure and mechanism of formation of human lens fluorophore LM-1. Relationship to vesperlysine A and the advanced Maillard reaction in aging, diabetes, and cataractogenesis.
    Tessier F; Obrenovich M; Monnier VM
    J Biol Chem; 1999 Jul; 274(30):20796-804. PubMed ID: 10409619
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Novel yellow compounds, dilysyldipyrrolones A and B, formed from xylose and lysine by the Maillard reaction.
    Sakamoto J; Takenaka M; Ono H; Murata M
    Biosci Biotechnol Biochem; 2009 Sep; 73(9):2065-9. PubMed ID: 19734661
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Cross-linking of proteins by Maillard processes: characterization and detection of lysine-arginine cross-links derived from glyoxal and methylglyoxal.
    Lederer MO; Klaiber RG
    Bioorg Med Chem; 1999 Nov; 7(11):2499-507. PubMed ID: 10632059
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The degradation of L-threose at Maillard reaction conditions.
    Li EY; Feather MS
    Carbohydr Res; 1994 Mar; 256(1):41-7. PubMed ID: 8194074
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Triosidines: novel Maillard reaction products and cross-links from the reaction of triose sugars with lysine and arginine residues.
    Tessier FJ; Monnier VM; Sayre LM; Kornfield JA
    Biochem J; 2003 Feb; 369(Pt 3):705-19. PubMed ID: 12379150
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Carbohydrate carbonyl mobility--the key process in the formation of alpha-dicarbonyl intermediates.
    Reihl O; Rothenbacher TM; Lederer MO; Schwack W
    Carbohydr Res; 2004 Jun; 339(9):1609-18. PubMed ID: 15183735
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Protein cross-linking by the Maillard reaction. Isolation, characterization, and in vivo detection of a lysine-lysine cross-link derived from methylglyoxal.
    Nagaraj RH; Shipanova IN; Faust FM
    J Biol Chem; 1996 Aug; 271(32):19338-45. PubMed ID: 8702619
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Identification and quantitative evaluation of the lysine-arginine crosslinks GODIC, MODIC, DODIC, and glucosepan in foods.
    Biemel KM; Bühler HP; Reihl O; Lederer MO
    Nahrung; 2001 Jun; 45(3):210-4. PubMed ID: 11455790
    [TBL] [Abstract][Full Text] [Related]  

  • 14. K2P--a novel cross-link from human lens protein.
    Cheng R; Feng Q; Argirov OK; Ortwerth BJ
    Ann N Y Acad Sci; 2005 Jun; 1043():184-94. PubMed ID: 16037238
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Model studies on protein side chain modification by 4-oxo-2-nonenal.
    Zhang WH; Liu J; Xu G; Yuan Q; Sayre LM
    Chem Res Toxicol; 2003 Apr; 16(4):512-23. PubMed ID: 12703968
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Analysis of glycated and ascorbylated proteins by gas chromatography-mass spectrometry.
    Hasenkopf K; Rönner B; Hiller H; Pischetsrieder M
    J Agric Food Chem; 2002 Sep; 50(20):5697-703. PubMed ID: 12236701
    [TBL] [Abstract][Full Text] [Related]  

  • 17. 3-hydroxykynurenine-mediated modification of human lens proteins: structure determination of a major modification using a monoclonal antibody.
    Staniszewska MM; Nagaraj RH
    J Biol Chem; 2005 Jun; 280(23):22154-64. PubMed ID: 15817458
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Structure elucidation of a novel yellow chromophore from human lens protein.
    Cheng R; Feng Q; Argirov OK; Ortwerth BJ
    J Biol Chem; 2004 Oct; 279(44):45441-9. PubMed ID: 15316021
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Model studies on the metal-catalyzed protein oxidation: structure of a possible His-Lys cross-link.
    Liu Y; Sun G; David A; Sayre LM
    Chem Res Toxicol; 2004 Jan; 17(1):110-8. PubMed ID: 14727925
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Rapid assessment of early glycation products by mass spectrometry.
    Prabhakaram M; Smith JB; Ortwerth BJ
    Biochem Mol Biol Int; 1996 Oct; 40(2):315-25. PubMed ID: 8896753
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.