These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

189 related articles for article (PubMed ID: 17466330)

  • 1. The geometry of interactions between catalytic residues and their substrates.
    Torrance JW; Holliday GL; Mitchell JB; Thornton JM
    J Mol Biol; 2007 Jun; 369(4):1140-52. PubMed ID: 17466330
    [TBL] [Abstract][Full Text] [Related]  

  • 2. An improved prediction of catalytic residues in enzyme structures.
    Tang YR; Sheng ZY; Chen YZ; Zhang Z
    Protein Eng Des Sel; 2008 May; 21(5):295-302. PubMed ID: 18287176
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The chemistry of protein catalysis.
    Holliday GL; Almonacid DE; Mitchell JB; Thornton JM
    J Mol Biol; 2007 Oct; 372(5):1261-77. PubMed ID: 17727879
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Dissecting the catalytic mechanism of a plant beta-D-glucan glucohydrolase through structural biology using inhibitors and substrate analogues.
    Hrmova M; Fincher GB
    Carbohydr Res; 2007 Sep; 342(12-13):1613-23. PubMed ID: 17548065
    [TBL] [Abstract][Full Text] [Related]  

  • 5. EzCatDB: the Enzyme Catalytic-mechanism Database.
    Nagano N
    Nucleic Acids Res; 2005 Jan; 33(Database issue):D407-12. PubMed ID: 15608227
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Understanding nature's catalytic toolkit.
    Gutteridge A; Thornton JM
    Trends Biochem Sci; 2005 Nov; 30(11):622-9. PubMed ID: 16214343
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Conformational change in substrate binding, catalysis and product release: an open and shut case?
    Gutteridge A; Thornton J
    FEBS Lett; 2004 Jun; 567(1):67-73. PubMed ID: 15165895
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Looking at enzymes from the inside out: the proximity of catalytic residues to the molecular centroid can be used for detection of active sites and enzyme-ligand interfaces.
    Ben-Shimon A; Eisenstein M
    J Mol Biol; 2005 Aug; 351(2):309-26. PubMed ID: 16019028
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Conformational changes observed in enzyme crystal structures upon substrate binding.
    Gutteridge A; Thornton J
    J Mol Biol; 2005 Feb; 346(1):21-8. PubMed ID: 15663924
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Locating the active sites of enzymes using mechanical properties.
    Sacquin-Mora S; Laforet E; Lavery R
    Proteins; 2007 May; 67(2):350-9. PubMed ID: 17311346
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Filling a hole in cytochrome P450 BM3 improves substrate binding and catalytic efficiency.
    Huang WC; Westlake AC; Maréchal JD; Joyce MG; Moody PC; Roberts GC
    J Mol Biol; 2007 Oct; 373(3):633-51. PubMed ID: 17868686
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Understanding the structural basis for substrate and inhibitor recognition in eukaryotic GH11 xylanases.
    Vardakou M; Dumon C; Murray JW; Christakopoulos P; Weiner DP; Juge N; Lewis RJ; Gilbert HJ; Flint JE
    J Mol Biol; 2008 Feb; 375(5):1293-305. PubMed ID: 18078955
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The crystal structures of ornithine carbamoyltransferase from Mycobacterium tuberculosis and its ternary complex with carbamoyl phosphate and L-norvaline reveal the enzyme's catalytic mechanism.
    Sankaranarayanan R; Cherney MM; Cherney LT; Garen CR; Moradian F; James MN
    J Mol Biol; 2008 Jan; 375(4):1052-63. PubMed ID: 18062991
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Understanding the functional roles of amino acid residues in enzyme catalysis.
    Holliday GL; Mitchell JB; Thornton JM
    J Mol Biol; 2009 Jul; 390(3):560-77. PubMed ID: 19447117
    [TBL] [Abstract][Full Text] [Related]  

  • 15. [The role of weak specific and nonspecific interactions in recognition and conversation by enzymes of long DNA].
    Nevinskiĭ GA
    Mol Biol (Mosk); 2004; 38(5):756-85. PubMed ID: 15554181
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Characterization of enzyme motions by solution NMR relaxation dispersion.
    Loria JP; Berlow RB; Watt ED
    Acc Chem Res; 2008 Feb; 41(2):214-21. PubMed ID: 18281945
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Biochemical and structural insights into substrate binding and catalytic mechanism of mammalian poly(A) polymerase.
    Martin G; Möglich A; Keller W; Doublié S
    J Mol Biol; 2004 Aug; 341(4):911-25. PubMed ID: 15328606
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Dynamics of the conformational transitions in the assembling of the Michaelis complex of a bisubstrate enzyme: a (15)N relaxation study of Escherichia coli 6-hydroxymethyl-7,8-dihydropterin pyrophosphokinase.
    Lescop E; Lu Z; Liu Q; Xu H; Li G; Xia B; Yan H; Jin C
    Biochemistry; 2009 Jan; 48(2):302-12. PubMed ID: 19108643
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Crystal structures of Paenibacillus polymyxa beta-glucosidase B complexes reveal the molecular basis of substrate specificity and give new insights into the catalytic machinery of family I glycosidases.
    Isorna P; Polaina J; Latorre-García L; Cañada FJ; González B; Sanz-Aparicio J
    J Mol Biol; 2007 Aug; 371(5):1204-18. PubMed ID: 17585934
    [TBL] [Abstract][Full Text] [Related]  

  • 20. In silico discovery of enzyme-substrate specificity-determining residue clusters.
    Yu GX; Park BH; Chandramohan P; Munavalli R; Geist A; Samatova NF
    J Mol Biol; 2005 Oct; 352(5):1105-17. PubMed ID: 16140329
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.