BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

192 related articles for article (PubMed ID: 17466343)

  • 1. Fibrillin influence on plastid ultrastructure and pigment content in tomato fruit.
    Simkin AJ; Gaffé J; Alcaraz JP; Carde JP; Bramley PM; Fraser PD; Kuntz M
    Phytochemistry; 2007 Jun; 68(11):1545-56. PubMed ID: 17466343
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Correlations of carotenoid content and transcript abundances for fibrillin and carotenogenic enzymes in Capsicum annum fruit pericarp.
    Kilcrease J; Rodriguez-Uribe L; Richins RD; Arcos JM; Victorino J; O'Connell MA
    Plant Sci; 2015 Mar; 232():57-66. PubMed ID: 25617324
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Over-expression of a pepper plastid lipid-associated protein in tobacco leads to changes in plastid ultrastructure and plant development upon stress.
    Rey P; Gillet B; Römer S; Eymery F; Massimino J; Peltier G; Kuntz M
    Plant J; 2000 Mar; 21(5):483-94. PubMed ID: 10758499
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Proteomic analysis of chromoplasts from six crop species reveals insights into chromoplast function and development.
    Wang YQ; Yang Y; Fei Z; Yuan H; Fish T; Thannhauser TW; Mazourek M; Kochian LV; Wang X; Li L
    J Exp Bot; 2013 Feb; 64(4):949-61. PubMed ID: 23314817
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Chloroplast to chromoplast transition in tomato fruit: spectral confocal microscopy analyses of carotenoids and chlorophylls in isolated plastids and time-lapse recording on intact live tissue.
    Egea I; Bian W; Barsan C; Jauneau A; Pech JC; Latché A; Li Z; Chervin C
    Ann Bot; 2011 Aug; 108(2):291-7. PubMed ID: 21788376
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Characterization of chromoplasts and carotenoids of red- and yellow-fleshed papaya (Carica papaya L.).
    Schweiggert RM; Steingass CB; Heller A; Esquivel P; Carle R
    Planta; 2011 Nov; 234(5):1031-44. PubMed ID: 21706336
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Chromoplast-specific carotenoid-associated protein appears to be important for enhanced accumulation of carotenoids in hp1 tomato fruits.
    Kilambi HV; Kumar R; Sharma R; Sreelakshmi Y
    Plant Physiol; 2013 Apr; 161(4):2085-101. PubMed ID: 23400702
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A xanthophyll-derived apocarotenoid regulates carotenogenesis in tomato chromoplasts.
    D'Ambrosio C; Stigliani AL; Rambla JL; Frusciante S; Diretto G; Enfissi EMA; Granell A; Fraser PD; Giorio G
    Plant Sci; 2023 Mar; 328():111575. PubMed ID: 36572066
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Manipulation of phytoene levels in tomato fruit: effects on isoprenoids, plastids, and intermediary metabolism.
    Fraser PD; Enfissi EM; Halket JM; Truesdale MR; Yu D; Gerrish C; Bramley PM
    Plant Cell; 2007 Oct; 19(10):3194-211. PubMed ID: 17933904
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Accumulation of plastid lipid-associated proteins (fibrillin/CDSP34) upon oxidative stress, ageing and biotic stress in Solanaceae and in response to drought in other species.
    Langenkämper G; Manac'h N; Broin M; Cuiné S; Becuwe N; Kuntz M; Rey P
    J Exp Bot; 2001 Jul; 52(360):1545-54. PubMed ID: 11457915
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Regulation of carotenoid formation during tomato fruit ripening and development.
    Bramley PM
    J Exp Bot; 2002 Oct; 53(377):2107-13. PubMed ID: 12324534
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A STAY-GREEN protein SlSGR1 regulates lycopene and β-carotene accumulation by interacting directly with SlPSY1 during ripening processes in tomato.
    Luo Z; Zhang J; Li J; Yang C; Wang T; Ouyang B; Li H; Giovannoni J; Ye Z
    New Phytol; 2013 Apr; 198(2):442-452. PubMed ID: 23406468
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Interference with Clp protease impairs carotenoid accumulation during tomato fruit ripening.
    D'Andrea L; Simon-Moya M; Llorente B; Llamas E; Marro M; Loza-Alvarez P; Li L; Rodriguez-Concepcion M
    J Exp Bot; 2018 Mar; 69(7):1557-1568. PubMed ID: 29385595
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A plastid terminal oxidase associated with carotenoid desaturation during chromoplast differentiation.
    Josse EM; Simkin AJ; Gaffé J; Labouré AM; Kuntz M; Carol P
    Plant Physiol; 2000 Aug; 123(4):1427-36. PubMed ID: 10938359
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The chloroplast-associated protein degradation pathway controls chromoplast development and fruit ripening in tomato.
    Ling Q; Sadali NM; Soufi Z; Zhou Y; Huang B; Zeng Y; Rodriguez-Concepcion M; Jarvis RP
    Nat Plants; 2021 May; 7(5):655-666. PubMed ID: 34007040
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Abscisic acid deficiency in the tomato mutant high-pigment 3 leading to increased plastid number and higher fruit lycopene content.
    Galpaz N; Wang Q; Menda N; Zamir D; Hirschberg J
    Plant J; 2008 Mar; 53(5):717-30. PubMed ID: 17988221
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Lycopene accumulation affects the biosynthesis of some carotenoid-related volatiles independent of ethylene in tomato.
    Gao H; Zhu H; Shao Y; Chen A; Lu C; Zhu B; Luo Y
    J Integr Plant Biol; 2008 Aug; 50(8):991-6. PubMed ID: 18713349
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Proteomic analysis of chloroplast-to-chromoplast transition in tomato reveals metabolic shifts coupled with disrupted thylakoid biogenesis machinery and elevated energy-production components.
    Barsan C; Zouine M; Maza E; Bian W; Egea I; Rossignol M; Bouyssie D; Pichereaux C; Purgatto E; Bouzayen M; Latché A; Pech JC
    Plant Physiol; 2012 Oct; 160(2):708-25. PubMed ID: 22908117
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Isolation of Chromoplasts and Suborganellar Compartments from Tomato and Bell Pepper Fruit.
    Barsan C; Kuntz M; Pech JC
    Methods Mol Biol; 2017; 1511():61-71. PubMed ID: 27730602
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Fibril assembly and carotenoid overaccumulation in chromoplasts: a model for supramolecular lipoprotein structures.
    Deruère J; Römer S; d'Harlingue A; Backhaus RA; Kuntz M; Camara B
    Plant Cell; 1994 Jan; 6(1):119-33. PubMed ID: 8130642
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.