BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

107 related articles for article (PubMed ID: 17466344)

  • 1. Long- and short-term phosphate deprivation in bean roots: plasma membrane lipid alterations and transient stimulation of phospholipases.
    Russo MA; Quartacci MF; Izzo R; Belligno A; Navari-Izzo F
    Phytochemistry; 2007 Jun; 68(11):1564-71. PubMed ID: 17466344
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Membrane phospholipids as a phosphate reserve: the dynamic nature of phospholipid-to-digalactosyl diacylglycerol exchange in higher plants.
    Tjellström H; Andersson MX; Larsson KE; Sandelius AS
    Plant Cell Environ; 2008 Oct; 31(10):1388-98. PubMed ID: 18643953
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Type-B monogalactosyldiacylglycerol synthases are involved in phosphate starvation-induced lipid remodeling, and are crucial for low-phosphate adaptation.
    Kobayashi K; Awai K; Nakamura M; Nagatani A; Masuda T; Ohta H
    Plant J; 2009 Jan; 57(2):322-31. PubMed ID: 18808455
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Can digalactosyldiacylglycerol substitute for phosphatidylcholine upon phosphate deprivation in leaves and roots of Arabidopsis?
    Härtel H; Benning C
    Biochem Soc Trans; 2000 Dec; 28(6):729-32. PubMed ID: 11171187
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Phospholipase C5 (NPC5) is involved in galactolipid accumulation during phosphate limitation in leaves of Arabidopsis.
    Gaude N; Nakamura Y; Scheible WR; Ohta H; Dörmann P
    Plant J; 2008 Oct; 56(1):28-39. PubMed ID: 18564386
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The effect of phosphate starvation on the lipid and fatty acid composition of the fresh water eustigmatophyte Monodus subterraneus.
    Khozin-Goldberg I; Cohen Z
    Phytochemistry; 2006 Apr; 67(7):696-701. PubMed ID: 16497342
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Phosphate-limited oat. The plasma membrane and the tonoplast as major targets for phospholipid-to-glycolipid replacement and stimulation of phospholipases in the plasma membrane.
    Andersson MX; Larsson KE; Tjellström H; Liljenberg C; Sandelius AS
    J Biol Chem; 2005 Jul; 280(30):27578-86. PubMed ID: 15927962
    [TBL] [Abstract][Full Text] [Related]  

  • 8. DGD1-independent biosynthesis of extraplastidic galactolipids after phosphate deprivation in Arabidopsis.
    Härtel H; Dormann P; Benning C
    Proc Natl Acad Sci U S A; 2000 Sep; 97(19):10649-54. PubMed ID: 10973486
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Differential changes in galactolipid and phospholipid species in soybean leaves and roots under nitrogen deficiency and after nodulation.
    Narasimhan R; Wang G; Li M; Roth M; Welti R; Wang X
    Phytochemistry; 2013 Dec; 96():81-91. PubMed ID: 24139145
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Lipid asymmetry in plant plasma membranes: phosphate deficiency-induced phospholipid replacement is restricted to the cytosolic leaflet.
    Tjellström H; Hellgren LI; Wieslander A; Sandelius AS
    FASEB J; 2010 Apr; 24(4):1128-38. PubMed ID: 19966136
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Characterization of a type A response regulator in the common bean (Phaseolus vulgaris) in response to phosphate starvation.
    Camacho Y; Martínez-Castilla L; Fragoso S; Vázquez S; Martínez-Barajas E; Coello P
    Physiol Plant; 2008 Mar; 132(3):272-82. PubMed ID: 18275459
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Effect of cadmium on lipid composition of pepper.
    Jemal F; Zarrouk M; Ghorbal MH
    Biochem Soc Trans; 2000 Dec; 28(6):907-10. PubMed ID: 11171253
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Phosphate-deficient oat replaces a major portion of the plasma membrane phospholipids with the galactolipid digalactosyldiacylglycerol.
    Andersson MX; Stridh MH; Larsson KE; Liljenberg C; Sandelius AS
    FEBS Lett; 2003 Feb; 537(1-3):128-32. PubMed ID: 12606044
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Copper excess triggers phospholipase D activity in wheat roots.
    Navari-Izzo F; Cestone B; Cavallini A; Natali L; Giordani T; Quartacci MF
    Phytochemistry; 2006 Jun; 67(12):1232-42. PubMed ID: 16765389
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Lipid remodeling under acidic conditions and its interplay with low Pi stress in Arabidopsis.
    Murakawa M; Ohta H; Shimojima M
    Plant Mol Biol; 2019 Sep; 101(1-2):81-93. PubMed ID: 31201686
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Lipid composition and fluidity of plasma membranes isolated from corn (Zea mays L.) roots.
    Bohn M; Heinz E; Lüthje S
    Arch Biochem Biophys; 2001 Mar; 387(1):35-40. PubMed ID: 11368181
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Digalactosyldiacylglycerol is required for better photosynthetic growth of Synechocystis sp. PCC6803 under phosphate limitation.
    Awai K; Watanabe H; Benning C; Nishida I
    Plant Cell Physiol; 2007 Nov; 48(11):1517-23. PubMed ID: 17932115
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Spatial aluminium sensitivity of root apices of two common bean (Phaseolus vulgaris L.) genotypes with contrasting aluminium resistance.
    Rangel AF; Rao IM; Horst WJ
    J Exp Bot; 2007; 58(14):3895-904. PubMed ID: 17975208
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The galactolipid digalactosyldiacylglycerol accumulates in the peribacteroid membrane of nitrogen-fixing nodules of soybean and Lotus.
    Gaude N; Tippmann H; Flemetakis E; Katinakis P; Udvardi M; Dörmann P
    J Biol Chem; 2004 Aug; 279(33):34624-30. PubMed ID: 15159398
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Implication of phospholipase D in response of Hordeum vulgare root to short-term potassium deprivation.
    Hafsi C; Russo MA; Sgherri C; Izzo R; Navari-Izzo F; Abdelly C
    J Plant Physiol; 2009 Mar; 166(5):499-506. PubMed ID: 18814934
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.