These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

364 related articles for article (PubMed ID: 17466466)

  • 41. Evolutionary diversification of the vertebrate transferrin multi-gene family.
    Hughes AL; Friedman R
    Immunogenetics; 2014 Nov; 66(11):651-61. PubMed ID: 25142446
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Molecular insights into a molluscan transferrin homolog identified from disk abalone (Haliotis discus discus) evidencing its detectable role in host antibacterial defense.
    Herath HM; Elvitigala DA; Godahewa GI; Whang I; Lee J
    Dev Comp Immunol; 2015 Nov; 53(1):222-33. PubMed ID: 26191782
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Transferrin and ferritin response to bacterial infection: the role of the liver and brain in fish.
    Neves JV; Wilson JM; Rodrigues PN
    Dev Comp Immunol; 2009 Jul; 33(7):848-57. PubMed ID: 19428486
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Large-scale prediction of disulphide bridges using kernel methods, two-dimensional recursive neural networks, and weighted graph matching.
    Cheng J; Saigo H; Baldi P
    Proteins; 2006 Mar; 62(3):617-29. PubMed ID: 16320312
    [TBL] [Abstract][Full Text] [Related]  

  • 45. A transferrin-like homolog in amphioxus Branchiostoma belcheri: Identification, expression and functional characterization.
    Liu J; Zhang S; Li L
    Mol Immunol; 2009 Sep; 46(15):3117-24. PubMed ID: 19577302
    [TBL] [Abstract][Full Text] [Related]  

  • 46. The major yolk protein in sea urchins is a transferrin-like, iron binding protein.
    Brooks JM; Wessel GM
    Dev Biol; 2002 May; 245(1):1-12. PubMed ID: 11969251
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Tracking the evolution of the proenkephalin gene in tetrapods.
    Roberts E; Shoureshi P; Kozak K; Szynskie L; Baron A; Lecaude S; Dores RM
    Gen Comp Endocrinol; 2007; 153(1-3):189-97. PubMed ID: 17449037
    [TBL] [Abstract][Full Text] [Related]  

  • 48. A kinetically active site in the C-lobe of human transferrin.
    Zak O; Tam B; MacGillivray RT; Aisen P
    Biochemistry; 1997 Sep; 36(36):11036-43. PubMed ID: 9283096
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Thiophilic interaction chromatography of mammalian and avian transferrins.
    MacKenzie JT; Srikrishnan T; Sulkowski E
    J Chromatogr Sci; 2007; 45(10):710-3. PubMed ID: 18078582
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Iron release is reduced by mutations of lysines 206 and 296 in recombinant N-terminal half-transferrin.
    Steinlein LM; Ligman CM; Kessler S; Ikeda RA
    Biochemistry; 1998 Sep; 37(39):13696-703. PubMed ID: 9753457
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Nucleotide sequence of transferrin cDNAs and tissue-specific of the transferrin gene in Atlantic cod (Gadus morhua).
    Denovan-Wright EM; Ramsey NB; McCormick CJ; Lazier CB; Wright JM
    Comp Biochem Physiol B Biochem Mol Biol; 1996 Feb; 113(2):269-73. PubMed ID: 8653583
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Structure of aluminium-bound ovotransferrin at 2.15 Angstroms resolution.
    Mizutani K; Mikami B; Aibara S; Hirose M
    Acta Crystallogr D Biol Crystallogr; 2005 Dec; 61(Pt 12):1636-42. PubMed ID: 16301797
    [TBL] [Abstract][Full Text] [Related]  

  • 53. A structural comparison of human serum transferrin and human lactoferrin.
    Wally J; Buchanan SK
    Biometals; 2007 Jun; 20(3-4):249-62. PubMed ID: 17216400
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Purification, characterization, cloning and structural analysis of Crocodylus siamensis ovotransferrin for insight into functions of iron binding and autocleavage.
    Chaipayang S; Songsiriritthigul C; Chen CJ; Palacios PM; Pierce BS; Jangpromma N; Klaynongsruang S
    Comp Biochem Physiol B Biochem Mol Biol; 2017 Oct; 212():59-69. PubMed ID: 28648632
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Molecular cloning of natriuretic peptides from the heart of reptiles: loss of ANP in diapsid reptiles and birds.
    Trajanovska S; Donald JA
    Gen Comp Endocrinol; 2008 Apr; 156(2):339-46. PubMed ID: 18295764
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Accelerated evolution of small serum proteins (SSPs)-The PSP94 family proteins in a Japanese viper.
    Aoki N; Matsuo H; Deshimaru M; Terada S
    Gene; 2008 Dec; 426(1-2):7-14. PubMed ID: 18817856
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Metal ligand-induced alterations in the surface structures of lactoferrin and transferrin probed by interaction with immobilized copper(II) ions.
    Hutchens TW; Yip TT
    J Chromatogr; 1991 Jan; 536(1-2):1-15. PubMed ID: 2050759
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Immunocytochemistry and protein analysis suggest that reptilian claws contain small high cysteine-glycine proteins.
    Alibardi L; Toni M
    Tissue Cell; 2009 Jun; 41(3):180-92. PubMed ID: 19058825
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Anion binding properties of the transferrins. Implications for function.
    Harris WR
    Biochim Biophys Acta; 2012 Mar; 1820(3):348-61. PubMed ID: 21846492
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Coordination of iron by the ferric iron-binding protein of pathogenic Neisseria is homologous to the transferrins.
    Nowalk AJ; Tencza SB; Mietzner TA
    Biochemistry; 1994 Nov; 33(43):12769-75. PubMed ID: 7947682
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 19.