These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
389 related articles for article (PubMed ID: 17466575)
1. Combined Raman spectrometer/laser-induced breakdown spectrometer for the next ESA mission to Mars. Bazalgette Courrèges-Lacoste G; Ahlers B; Pérez FR Spectrochim Acta A Mol Biomol Spectrosc; 2007 Dec; 68(4):1023-8. PubMed ID: 17466575 [TBL] [Abstract][Full Text] [Related]
2. Raman signal processing software for automated identification of mineral phases and biosignatures on Mars. Sobron P; Sobron F; Sanz A; Rull F Appl Spectrosc; 2008 Apr; 62(4):364-70. PubMed ID: 18416892 [TBL] [Abstract][Full Text] [Related]
3. Detection of Potential Lipid Biomarkers in Oxidative Environments by Raman Spectroscopy and Implications for the ExoMars 2020-Raman Laser Spectrometer Instrument Performance. Carrizo D; Muñoz-Iglesias V; Fernández-Sampedro MT; Gil-Lozano C; Sánchez-García L; Prieto-Ballesteros O; Medina J; Rull F Astrobiology; 2020 Mar; 20(3):405-414. PubMed ID: 31985262 [TBL] [Abstract][Full Text] [Related]
4. New trends in telescopic remote Raman spectroscopic instrumentation. Sharma SK Spectrochim Acta A Mol Biomol Spectrosc; 2007 Dec; 68(4):1008-22. PubMed ID: 17723317 [TBL] [Abstract][Full Text] [Related]
5. The ExoMars Raman spectrometer and the identification of biogeological spectroscopic signatures using a flight-like prototype. Edwards HG; Hutchinson I; Ingley R Anal Bioanal Chem; 2012 Oct; 404(6-7):1723-31. PubMed ID: 22865011 [TBL] [Abstract][Full Text] [Related]
6. Application of portable Raman instruments for fast and non-destructive detection of minerals on outcrops. Jehlicka J; Vítek P; Edwards HG; Heagraves M; Capoun T Spectrochim Acta A Mol Biomol Spectrosc; 2009 Aug; 73(3):410-9. PubMed ID: 18993111 [TBL] [Abstract][Full Text] [Related]
8. Combined remote LIBS and Raman spectroscopy at 8.6m of sulfur-containing minerals, and minerals coated with hematite or covered with basaltic dust. Sharma SK; Misra AK; Lucey PG; Wiens RC; Clegg SM Spectrochim Acta A Mol Biomol Spectrosc; 2007 Dec; 68(4):1036-45. PubMed ID: 17723318 [TBL] [Abstract][Full Text] [Related]
9. Analysis of water ice and water ice/soil mixtures using laser-induced breakdown spectroscopy: application to Mars polar exploration. Arp ZA; Cremers DA; Wiens RC; Wayne DM; Sallé B; Maurice S Appl Spectrosc; 2004 Aug; 58(8):897-909. PubMed ID: 15324495 [TBL] [Abstract][Full Text] [Related]
10. ExoMars Raman Laser Spectrometer: A Tool for the Potential Recognition of Wet-Target Craters on Mars. Veneranda M; Lopez-Reyes G; Manrique JA; Medina J; Ruiz-Galende P; Torre-Fdez I; Castro K; Lantz C; Poulet F; Dypvik H; Werner SC; Rull F Astrobiology; 2020 Mar; 20(3):349-363. PubMed ID: 31985268 [TBL] [Abstract][Full Text] [Related]
12. Laser-induced breakdown spectroscopy for ambient air particulate monitoring: correlation of total and speciated aerosol particle counts. Hettinger B; Hohreiter V; Swingle M; Hahn DW Appl Spectrosc; 2006 Mar; 60(3):237-45. PubMed ID: 16608565 [TBL] [Abstract][Full Text] [Related]
13. Analysis of natural and artificial ultramarine blue pigments using laser induced breakdown and pulsed Raman spectroscopy, statistical analysis and light microscopy. Osticioli I; Mendes NF; Nevin A; Gil FP; Becucci M; Castellucci E Spectrochim Acta A Mol Biomol Spectrosc; 2009 Aug; 73(3):525-31. PubMed ID: 19129003 [TBL] [Abstract][Full Text] [Related]
14. Next generation laser-based standoff spectroscopy techniques for Mars exploration. Gasda PJ; Acosta-Maeda TE; Lucey PG; Misra AK; Sharma SK; Taylor GJ Appl Spectrosc; 2015; 69(2):173-92. PubMed ID: 25587811 [TBL] [Abstract][Full Text] [Related]
15. ExoMars Raman Laser Spectrometer: A Tool to Semiquantify the Serpentinization Degree of Olivine-Rich Rocks on Mars. Veneranda M; Lopez-Reyes G; Pascual Sanchez E; Krzesińska AM; Manrique-Martinez JA; Sanz-Arranz A; Lantz C; Lalla E; Moral A; Medina J; Poulet F; Dypvik H; Werner SC; Vago JL; Rull F Astrobiology; 2021 Mar; 21(3):307-322. PubMed ID: 33252242 [TBL] [Abstract][Full Text] [Related]
16. Challenges Analyzing Gypsum on Mars by Raman Spectroscopy. Marshall CP; Olcott Marshall A Astrobiology; 2015 Sep; 15(9):761-9. PubMed ID: 26317670 [TBL] [Abstract][Full Text] [Related]
17. Raman efficiencies of natural rocks and minerals: performance of a remote Raman system for planetary exploration at a distance of 10 meters. Stopar JD; Lucey PG; Sharma SK; Misra AK; Taylor GJ; Hubble HW Spectrochim Acta A Mol Biomol Spectrosc; 2005 Aug; 61(10):2315-23. PubMed ID: 16029852 [TBL] [Abstract][Full Text] [Related]
18. The Complex Molecules Detector (CMOLD): A Fluidic-Based Instrument Suite to Search for (Bio)chemical Complexity on Mars and Icy Moons. Fairén AG; Gómez-Elvira J; Briones C; Prieto-Ballesteros O; Rodríguez-Manfredi JA; López Heredero R; Belenguer T; Moral AG; Moreno-Paz M; Parro V Astrobiology; 2020 Sep; 20(9):1076-1096. PubMed ID: 32856927 [TBL] [Abstract][Full Text] [Related]
19. A combined remote Raman and LIBS instrument for characterizing minerals with 532 nm laser excitation. Sharma SK; Misra AK; Lucey PG; Lentz RC Spectrochim Acta A Mol Biomol Spectrosc; 2009 Aug; 73(3):468-76. PubMed ID: 19084470 [TBL] [Abstract][Full Text] [Related]
20. Raman Characterization of the CanMars Rover Field Campaign Samples Using the Raman Laser Spectrometer ExoMars Simulator: Implications for Mars and Planetary Exploration. Lalla EA; Konstantinidis M; Veneranda M; Daly MG; Manrique JA; Lymer EA; Freemantle J; Cloutis EA; Stromberg JM; Shkolyar S; Caudill C; Applin D; Vago JL; Rull F; Lopez-Reyes G Astrobiology; 2022 Apr; 22(4):416-438. PubMed ID: 35041521 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]