BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

217 related articles for article (PubMed ID: 17466622)

  • 1. How U38, 39, and 40 of many tRNAs become the targets for pseudouridylation by TruA.
    Hur S; Stroud RM
    Mol Cell; 2007 Apr; 26(2):189-203. PubMed ID: 17466622
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Pseudouridine synthase 3 from mouse modifies the anticodon loop of tRNA.
    Chen J; Patton JR
    Biochemistry; 2000 Oct; 39(41):12723-30. PubMed ID: 11027153
    [TBL] [Abstract][Full Text] [Related]  

  • 3. In human pseudouridine synthase 1 (hPus1), a C-terminal helical insert blocks tRNA from binding in the same orientation as in the Pus1 bacterial homologue TruA, consistent with their different target selectivities.
    Czudnochowski N; Wang AL; Finer-Moore J; Stroud RM
    J Mol Biol; 2013 Oct; 425(20):3875-87. PubMed ID: 23707380
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Identity determinants of E. coli tRNAs.
    Hasegawa T; Himeno H; Asahara H; Tamura K; Nameki N; Watanabe K; Shimizu M
    Nucleic Acids Symp Ser; 1991; (25):153-4. PubMed ID: 1726805
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The structural basis for tRNA recognition and pseudouridine formation by pseudouridine synthase I.
    Foster PG; Huang L; Santi DV; Stroud RM
    Nat Struct Biol; 2000 Jan; 7(1):23-7. PubMed ID: 10625422
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Structures of tRNAs with an expanded anticodon loop in the decoding center of the 30S ribosomal subunit.
    Dunham CM; Selmer M; Phelps SS; Kelley AC; Suzuki T; Joseph S; Ramakrishnan V
    RNA; 2007 Jun; 13(6):817-23. PubMed ID: 17416634
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Crystal structure of pseudouridine synthase RluA: indirect sequence readout through protein-induced RNA structure.
    Hoang C; Chen J; Vizthum CA; Kandel JM; Hamilton CS; Mueller EG; Ferré-D'Amaré AR
    Mol Cell; 2006 Nov; 24(4):535-45. PubMed ID: 17188032
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Partial activity is seen with many substitutions of highly conserved active site residues in human Pseudouridine synthase 1.
    Sibert BS; Fischel-Ghodsian N; Patton JR
    RNA; 2008 Sep; 14(9):1895-906. PubMed ID: 18648068
    [TBL] [Abstract][Full Text] [Related]  

  • 9. RNA-modifying enzymes.
    Ferré-D'Amaré AR
    Curr Opin Struct Biol; 2003 Feb; 13(1):49-55. PubMed ID: 12581659
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Escherichia coli dimethylallyl diphosphate:tRNA dimethylallyltransferase: essential elements for recognition of tRNA substrates within the anticodon stem-loop.
    Soderberg T; Poulter CD
    Biochemistry; 2000 May; 39(21):6546-53. PubMed ID: 10828971
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Caenorhabditis elegans pseudouridine synthase 1 activity in vivo: tRNA is a substrate, but not U2 small nuclear RNA.
    Patton JR; Padgett RW
    Biochem J; 2003 Jun; 372(Pt 2):595-602. PubMed ID: 12597772
    [TBL] [Abstract][Full Text] [Related]  

  • 12. tRNA hopping: effects of mutant tRNAs.
    O'Connor M
    Biochim Biophys Acta; 2003 Oct; 1630(1):41-6. PubMed ID: 14580678
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Disruption of evolutionarily correlated tRNA elements impairs accurate decoding.
    Nguyen HA; Sunita S; Dunham CM
    Proc Natl Acad Sci U S A; 2020 Jul; 117(28):16333-16338. PubMed ID: 32601241
    [TBL] [Abstract][Full Text] [Related]  

  • 14. RNA modification enzyme TruB is a tRNA chaperone.
    Keffer-Wilkes LC; Veerareddygari GR; Kothe U
    Proc Natl Acad Sci U S A; 2016 Dec; 113(50):14306-14311. PubMed ID: 27849601
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Transfer RNA recognition by the Escherichia coli delta2-isopentenyl-pyrophosphate:tRNA delta2-isopentenyl transferase: dependence on the anticodon arm structure.
    Motorin Y; Bec G; Tewari R; Grosjean H
    RNA; 1997 Jul; 3(7):721-33. PubMed ID: 9214656
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Substrate recognition mechanism of tRNA-targeting ribonuclease, colicin D, and an insight into tRNA cleavage-mediated translation impairment.
    Ogawa T; Takahashi K; Ishida W; Aono T; Hidaka M; Terada T; Masaki H
    RNA Biol; 2021 Aug; 18(8):1193-1205. PubMed ID: 33211605
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The 51-63 base pair of tRNA confers specificity for binding by EF-Tu.
    Sanderson LE; Uhlenbeck OC
    RNA; 2007 Jun; 13(6):835-40. PubMed ID: 17449728
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Biogenesis and growth phase-dependent alteration of 5-methoxycarbonylmethoxyuridine in tRNA anticodons.
    Sakai Y; Miyauchi K; Kimura S; Suzuki T
    Nucleic Acids Res; 2016 Jan; 44(2):509-23. PubMed ID: 26681692
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Snapshots of dynamics in synthesizing N(6)-isopentenyladenosine at the tRNA anticodon.
    Chimnaronk S; Forouhar F; Sakai J; Yao M; Tron CM; Atta M; Fontecave M; Hunt JF; Tanaka I
    Biochemistry; 2009 Jun; 48(23):5057-65. PubMed ID: 19435325
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Role of the three consecutive G:C base pairs conserved in the anticodon stem of initiator tRNAs in initiation of protein synthesis in Escherichia coli.
    Mandal N; Mangroo D; Dalluge JJ; McCloskey JA; Rajbhandary UL
    RNA; 1996 May; 2(5):473-82. PubMed ID: 8665414
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.