BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

156 related articles for article (PubMed ID: 17466938)

  • 1. Counterion-mediated membrane penetration: cationic cell-penetrating peptides overcome Born energy barrier by ion-pairing with phospholipids.
    Esbjörner EK; Lincoln P; Nordén B
    Biochim Biophys Acta; 2007 Jun; 1768(6):1550-8. PubMed ID: 17466938
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Evaluating Force Fields for the Computational Prediction of Ionized Arginine and Lysine Side-Chains Partitioning into Lipid Bilayers and Octanol.
    Sun D; Forsman J; Woodward CE
    J Chem Theory Comput; 2015 Apr; 11(4):1775-91. PubMed ID: 26574387
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Bilayer interaction and localization of cell penetrating peptides with model membranes: a comparative study of a human calcitonin (hCT)-derived peptide with pVEC and pAntp(43-58).
    Herbig ME; Fromm U; Leuenberger J; Krauss U; Beck-Sickinger AG; Merkle HP
    Biochim Biophys Acta; 2005 Jun; 1712(2):197-211. PubMed ID: 15919050
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Molecular dynamics simulations of pentapeptides at interfaces: salt bridge and cation-pi interactions.
    Aliste MP; MacCallum JL; Tieleman DP
    Biochemistry; 2003 Aug; 42(30):8976-87. PubMed ID: 12885230
    [TBL] [Abstract][Full Text] [Related]  

  • 5. N
    Calabretta LO; Yang J; Raines RT
    J Pept Sci; 2023 May; 29(5):e3468. PubMed ID: 36494904
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Comparative study on the interaction of cell-penetrating polycationic polymers with lipid membranes.
    Takechi Y; Tanaka H; Kitayama H; Yoshii H; Tanaka M; Saito H
    Chem Phys Lipids; 2012 Jan; 165(1):51-8. PubMed ID: 22108318
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Interaction of linear cationic peptides with phospholipid membranes and polymers of sialic acid.
    Kuznetsov AS; Dubovskii PV; Vorontsova OV; Feofanov AV; Efremov RG
    Biochemistry (Mosc); 2014 May; 79(5):459-68. PubMed ID: 24954597
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The interfacial electrostatic potential modulates the insertion of cell-penetrating peptides into lipid bilayers.
    Via MA; Klug J; Wilke N; Mayorga LS; Del Pópolo MG
    Phys Chem Chem Phys; 2018 Feb; 20(7):5180-5189. PubMed ID: 29393934
    [TBL] [Abstract][Full Text] [Related]  

  • 9. On the importance of electrostatic interactions between cell penetrating peptides and membranes: a pathway toward tumor cell selectivity?
    Jobin ML; Alves ID
    Biochimie; 2014 Dec; 107 Pt A():154-9. PubMed ID: 25107405
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Studies of the minimum hydrophobicity of alpha-helical peptides required to maintain a stable transmembrane association with phospholipid bilayer membranes.
    Lewis RN; Liu F; Krivanek R; Rybar P; Hianik T; Flach CR; Mendelsohn R; Chen Y; Mant CT; Hodges RS; McElhaney RN
    Biochemistry; 2007 Jan; 46(4):1042-54. PubMed ID: 17240988
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Aggregation of oligoarginines at phospholipid membranes: molecular dynamics simulations, time-dependent fluorescence shift, and biomimetic colorimetric assays.
    Vazdar M; Wernersson E; Khabiri M; Cwiklik L; Jurkiewicz P; Hof M; Mann E; Kolusheva S; Jelinek R; Jungwirth P
    J Phys Chem B; 2013 Oct; 117(39):11530-40. PubMed ID: 24020922
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Electrostatic Localization of RNA to Protocell Membranes by Cationic Hydrophobic Peptides.
    Kamat NP; Tobé S; Hill IT; Szostak JW
    Angew Chem Int Ed Engl; 2015 Sep; 54(40):11735-9. PubMed ID: 26223820
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Membrane association, electrostatic sequestration, and cytotoxicity of Gly-Leu-rich peptide orthologs with differing functions.
    Vanhoye D; Bruston F; El Amri S; Ladram A; Amiche M; Nicolas P
    Biochemistry; 2004 Jul; 43(26):8391-409. PubMed ID: 15222751
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Human neutrophil peptide 1 variants bearing arginine modified cationic side chains: effects on membrane partitioning.
    Bonucci A; Balducci E; Martinelli M; Pogni R
    Biophys Chem; 2014 Jun; 190-191():32-40. PubMed ID: 24820901
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Protein transduction domains of HIV-1 and SIV TAT interact with charged lipid vesicles. Binding mechanism and thermodynamic analysis.
    Ziegler A; Blatter XL; Seelig A; Seelig J
    Biochemistry; 2003 Aug; 42(30):9185-94. PubMed ID: 12885253
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Anionic phospholipids modulate peptide insertion into membranes.
    Liu LP; Deber CM
    Biochemistry; 1997 May; 36(18):5476-82. PubMed ID: 9154930
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Effect of arginine-rich cell penetrating peptides on membrane pore formation and life-times: a molecular simulation study.
    Sun D; Forsman J; Lund M; Woodward CE
    Phys Chem Chem Phys; 2014 Oct; 16(38):20785-95. PubMed ID: 25166723
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Conformational structure, dynamics, and solvation energies of small alanine peptides in water and carbon tetrachloride.
    Xiang TX; Anderson BD
    J Pharm Sci; 2006 Jun; 95(6):1269-87. PubMed ID: 16625657
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Tools for predicting binding and insertion of CPPs into lipid bilayers.
    Almeida PF
    Methods Mol Biol; 2011; 683():81-98. PubMed ID: 21053124
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The evaluation of liposome-water partitioning of 8-hydroxyquinolines and their copper complexes.
    Kaiser SM; Escher BI
    Environ Sci Technol; 2006 Mar; 40(6):1784-91. PubMed ID: 16570598
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.