BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

110 related articles for article (PubMed ID: 17467026)

  • 1. Significance of the C-terminal amino acid residue in mengovirus RNA-dependent RNA polymerase.
    Dmitrieva TM; Alexeevski AV; Shatskaya GS; Tolskaya EA; Gmyl AP; Khitrina EV; Agol VI
    Virology; 2007 Aug; 365(1):79-91. PubMed ID: 17467026
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The GTP binding sites interacted with RNA-dependent RNA polymerase of classical swine fever virus in de novo initiation.
    Xu Z; Chao Y; Si Y; Wang J; Jin M; Guo A; Qian P; Zhou R; Chen H
    In Silico Biol; 2008; 8(1):21-32. PubMed ID: 18430987
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The structure of bovine viral diarrhea virus RNA-dependent RNA polymerase and its amino-terminal domain.
    Choi KH; Gallei A; Becher P; Rossmann MG
    Structure; 2006 Jul; 14(7):1107-13. PubMed ID: 16843892
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Analysis of RNA-dependent RNA polymerase structure and function as guided by known polymerase structures and computer predictions of secondary structure.
    O'Reilly EK; Kao CC
    Virology; 1998 Dec; 252(2):287-303. PubMed ID: 9878607
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Birnavirus VP1 proteins form a distinct subgroup of RNA-dependent RNA polymerases lacking a GDD motif.
    Shwed PS; Dobos P; Cameron LA; Vakharia VN; Duncan R
    Virology; 2002 May; 296(2):241-50. PubMed ID: 12069523
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Sequence and structure prediction of RNA-dependent RNA polymerase of lily symptomless virus isolated from L. × 'Casablanca'.
    Xu P; Li H; Liu J; Luan Y; Yin Y; Bai J
    Arch Virol; 2011 Jun; 156(6):939-43. PubMed ID: 21409447
    [TBL] [Abstract][Full Text] [Related]  

  • 7. RNA-dependent RNA polymerases of dsRNA bacteriophages.
    Makeyev EV; Grimes JM
    Virus Res; 2004 Apr; 101(1):45-55. PubMed ID: 15010216
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Functional mapping of PVX RNA-dependent RNA-replicase using pentapeptide scanning mutagenesis-Identification of regions essential for replication and subgenomic RNA amplification.
    Draghici HK; Pilot R; Thiel H; Varrelmann M
    Virus Res; 2009 Jul; 143(1):114-24. PubMed ID: 19463728
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The crystal structure of the RNA-dependent RNA polymerase from human rhinovirus: a dual function target for common cold antiviral therapy.
    Love RA; Maegley KA; Yu X; Ferre RA; Lingardo LK; Diehl W; Parge HE; Dragovich PS; Fuhrman SA
    Structure; 2004 Aug; 12(8):1533-44. PubMed ID: 15296746
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Investigation of activity of recombinant mengovirus RNA-dependent RNA polymerase and its mutants.
    Shatskaya GS; Drutsa VL; Koroleva ON; Osterman IA; Dmitrieva TM
    Biochemistry (Mosc); 2013 Jan; 78(1):96-101. PubMed ID: 23379565
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A pyrazolotriazolopyrimidinamine inhibitor of bovine viral diarrhea virus replication that targets the viral RNA-dependent RNA polymerase.
    Paeshuyse J; Letellier C; Froeyen M; Dutartre H; Vrancken R; Canard B; De Clercq E; Gueiffier A; Teulade JC; Herdewijn P; Puerstinger G; Koenen F; Kerkhofs P; Baraldi PG; Neyts J
    Antiviral Res; 2009 Jun; 82(3):141-7. PubMed ID: 19428605
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Comparative mechanistic studies of de novo RNA synthesis by flavivirus RNA-dependent RNA polymerases.
    Selisko B; Dutartre H; Guillemot JC; Debarnot C; Benarroch D; Khromykh A; Desprès P; Egloff MP; Canard B
    Virology; 2006 Jul; 351(1):145-58. PubMed ID: 16631221
    [TBL] [Abstract][Full Text] [Related]  

  • 13. RNA-dependent RNA polymerases from Flaviviridae.
    Choi KH; Rossmann MG
    Curr Opin Struct Biol; 2009 Dec; 19(6):746-51. PubMed ID: 19914821
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Comparison of the amino acid sequences of RNA-dependent RNA polymerases of cypoviruses in the family Reoviridae.
    Rao S; Carner GR; Scott SW; Omura T; Hagiwara K
    Arch Virol; 2003 Feb; 148(2):209-19. PubMed ID: 12556988
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Imidazo[4,5-c]pyridines inhibit the in vitro replication of the classical swine fever virus and target the viral polymerase.
    Vrancken R; Paeshuyse J; Haegeman A; Puerstinger G; Froeyen M; Herdewijn P; Kerkhofs P; Neyts J; Koenen F
    Antiviral Res; 2008 Feb; 77(2):114-9. PubMed ID: 17997169
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Nucleotide channel of RNA-dependent RNA polymerase used for intermolecular uridylylation of protein primer.
    Tellez AB; Crowder S; Spagnolo JF; Thompson AA; Peersen OB; Brutlag DL; Kirkegaard K
    J Mol Biol; 2006 Mar; 357(2):665-75. PubMed ID: 16427083
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Structure-based inhibition of Norovirus RNA-dependent RNA polymerases.
    Mastrangelo E; Pezzullo M; Tarantino D; Petazzi R; Germani F; Kramer D; Robel I; Rohayem J; Bolognesi M; Milani M
    J Mol Biol; 2012 Jun; 419(3-4):198-210. PubMed ID: 22446684
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Interaction between the replicase proteins of Tomato bushy stunt virus in vitro and in vivo.
    Rajendran KS; Nagy PD
    Virology; 2004 Sep; 326(2):250-61. PubMed ID: 15302211
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Permutation of the active site of putative RNA-dependent RNA polymerase in a newly identified species of plant alpha-like virus.
    Sabanadzovic S; Ghanem-Sabanadzovic NA; Gorbalenya AE
    Virology; 2009 Nov; 394(1):1-7. PubMed ID: 19793602
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Mutant viral polymerase in the transition of virus to error catastrophe identifies a critical site for RNA binding.
    Arias A; Agudo R; Ferrer-Orta C; Pérez-Luque R; Airaksinen A; Brocchi E; Domingo E; Verdaguer N; Escarmís C
    J Mol Biol; 2005 Nov; 353(5):1021-32. PubMed ID: 16216271
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.