BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

569 related articles for article (PubMed ID: 17467183)

  • 1. Neurotoxicity mechanisms of thioether ecstasy metabolites.
    Capela JP; Macedo C; Branco PS; Ferreira LM; Lobo AM; Fernandes E; Remião F; Bastos ML; Dirnagl U; Meisel A; Carvalho F
    Neuroscience; 2007 Jun; 146(4):1743-57. PubMed ID: 17467183
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Neurotoxicity of Ecstasy metabolites in rat cortical neurons, and influence of hyperthermia.
    Capela JP; Meisel A; Abreu AR; Branco PS; Ferreira LM; Lobo AM; Remião F; Bastos ML; Carvalho F
    J Pharmacol Exp Ther; 2006 Jan; 316(1):53-61. PubMed ID: 16183702
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The toxicity of N-methyl-alpha-methyldopamine to freshly isolated rat hepatocytes is prevented by ascorbic acid and N-acetylcysteine.
    Carvalho M; Remião F; Milhazes N; Borges F; Fernandes E; Carvalho F; Bastos ML
    Toxicology; 2004 Aug; 200(2-3):193-203. PubMed ID: 15212815
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Role of metabolites in MDMA (ecstasy)-induced nephrotoxicity: an in vitro study using rat and human renal proximal tubular cells.
    Carvalho M; Hawksworth G; Milhazes N; Borges F; Monks TJ; Fernandes E; Carvalho F; Bastos ML
    Arch Toxicol; 2002 Oct; 76(10):581-8. PubMed ID: 12373454
    [TBL] [Abstract][Full Text] [Related]  

  • 5. "Ecstasy"-induced toxicity in SH-SY5Y differentiated cells: role of hyperthermia and metabolites.
    Barbosa DJ; Capela JP; Silva R; Ferreira LM; Branco PS; Fernandes E; Bastos ML; Carvalho F
    Arch Toxicol; 2014 Feb; 88(2):515-31. PubMed ID: 24177245
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Metabolism is required for the expression of ecstasy-induced cardiotoxicity in vitro.
    Carvalho M; Remião F; Milhazes N; Borges F; Fernandes E; Monteiro Mdo C; Gonçalves MJ; Seabra V; Amado F; Carvalho F; Bastos ML
    Chem Res Toxicol; 2004 May; 17(5):623-32. PubMed ID: 15144219
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Hepatotoxicity of 3,4-methylenedioxyamphetamine and alpha-methyldopamine in isolated rat hepatocytes: formation of glutathione conjugates.
    Carvalho M; Milhazes N; Remião F; Borges F; Fernandes E; Amado F; Monks TJ; Carvalho F; Bastos ML
    Arch Toxicol; 2004 Jan; 78(1):16-24. PubMed ID: 14586543
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Neurotoxicity of "ecstasy" and its metabolites in human dopaminergic differentiated SH-SY5Y cells.
    Ferreira PS; Nogueira TB; Costa VM; Branco PS; Ferreira LM; Fernandes E; Bastos ML; Meisel A; Carvalho F; Capela JP
    Toxicol Lett; 2013 Feb; 216(2-3):159-70. PubMed ID: 23194825
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Ecstasy induces apoptosis via 5-HT(2A)-receptor stimulation in cortical neurons.
    Capela JP; Fernandes E; Remião F; Bastos ML; Meisel A; Carvalho F
    Neurotoxicology; 2007 Jul; 28(4):868-75. PubMed ID: 17572501
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The role of metabolism in 3,4-(+)-methylenedioxyamphetamine and 3,4-(+)-methylenedioxymethamphetamine (ecstasy) toxicity.
    Monks TJ; Jones DC; Bai F; Lau SS
    Ther Drug Monit; 2004 Apr; 26(2):132-6. PubMed ID: 15228153
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Thioether metabolites of 3,4-methylenedioxyamphetamine and 3,4-methylenedioxymethamphetamine inhibit human serotonin transporter (hSERT) function and simultaneously stimulate dopamine uptake into hSERT-expressing SK-N-MC cells.
    Jones DC; Lau SS; Monks TJ
    J Pharmacol Exp Ther; 2004 Oct; 311(1):298-306. PubMed ID: 15169827
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Ecstasy-induced cell death in cortical neuronal cultures is serotonin 2A-receptor-dependent and potentiated under hyperthermia.
    Capela JP; Ruscher K; Lautenschlager M; Freyer D; Dirnagl U; Gaio AR; Bastos ML; Meisel A; Carvalho F
    Neuroscience; 2006; 139(3):1069-81. PubMed ID: 16504407
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The mixture of "ecstasy" and its metabolites is toxic to human SH-SY5Y differentiated cells at in vivo relevant concentrations.
    Barbosa DJ; Capela JP; Silva R; Vilas-Boas V; Ferreira LM; Branco PS; Fernandes E; Bastos Mde L; Carvalho F
    Arch Toxicol; 2014 Feb; 88(2):455-73. PubMed ID: 24101030
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Bacterial plate assays and electrochemical methods: an efficient tandem for evaluating the ability of catechol-thioether metabolites of MDMA ("ecstasy") to induce toxic effects through redox-cycling.
    Felim A; Urios A; Neudörffer A; Herrera G; Blanco M; Largeron M
    Chem Res Toxicol; 2007 Apr; 20(4):685-93. PubMed ID: 17355154
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Serotonergic neurotoxic metabolites of ecstasy identified in rat brain.
    Jones DC; Duvauchelle C; Ikegami A; Olsen CM; Lau SS; de la Torre R; Monks TJ
    J Pharmacol Exp Ther; 2005 Apr; 313(1):422-31. PubMed ID: 15634943
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Effects of intracerebroventricular administration of 5-(glutathion-S-yl)-alpha-methyldopamine on brain dopamine, serotonin, and norepinephrine concentrations in male Sprague-Dawley rats.
    Miller RT; Lau SS; Monks TJ
    Chem Res Toxicol; 1996 Mar; 9(2):457-65. PubMed ID: 8839050
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Metabolic interactions between ethanol and MDMA in primary cultured rat hepatocytes.
    Pontes H; de Pinho PG; Fernandes E; Branco PS; Ferreira LM; Carmo H; Remião F; Carvalho F; Bastos ML
    Toxicology; 2010 Apr; 270(2-3):150-7. PubMed ID: 20170704
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Pro-oxidant effects of Ecstasy and its metabolites in mouse brain synaptosomes.
    Barbosa DJ; Capela JP; Oliveira JM; Silva R; Ferreira LM; Siopa F; Branco PS; Fernandes E; Duarte JA; de Lourdes Bastos M; Carvalho F
    Br J Pharmacol; 2012 Feb; 165(4b):1017-33. PubMed ID: 21506960
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Effect of 3,4-methylenedioxymethamphetamine ("ecstasy") on body temperature and liver antioxidant status in mice: influence of ambient temperature.
    Carvalho M; Carvalho F; Remião F; de Lourdes Pereira M; Pires-das-Neves R; de Lourdes Bastos M
    Arch Toxicol; 2002 Apr; 76(3):166-72. PubMed ID: 11967622
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Glutathione and N-acetylcysteine conjugates of alpha-methyldopamine produce serotonergic neurotoxicity: possible role in methylenedioxyamphetamine-mediated neurotoxicity.
    Bai F; Lau SS; Monks TJ
    Chem Res Toxicol; 1999 Dec; 12(12):1150-7. PubMed ID: 10604863
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 29.