These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

202 related articles for article (PubMed ID: 17467898)

  • 1. Adsorption properties of hyperbranched aliphatic polyester grafted attapulgite towards heavy metal ions.
    Liu P; Wang T
    J Hazard Mater; 2007 Oct; 149(1):75-9. PubMed ID: 17467898
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Synthesis of an attapulgite clay@carbon nanocomposite adsorbent by a hydrothermal carbonization process and their application in the removal of toxic metal ions from water.
    Chen LF; Liang HW; Lu Y; Cui CH; Yu SH
    Langmuir; 2011 Jul; 27(14):8998-9004. PubMed ID: 21668024
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Pre-concentration and separation of heavy metal ions by chemically modified waste paper gel.
    Adhikari CR; Parajuli D; Inoue K; Ohto K; Kawakita H
    Chemosphere; 2008 May; 72(2):182-8. PubMed ID: 18355892
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Adsorption of Hg2+ from aqueous solution onto polyacrylamide/attapulgite.
    Zhao Y; Chen Y; Li M; Zhou S; Xue A; Xing W
    J Hazard Mater; 2009 Nov; 171(1-3):640-6. PubMed ID: 19586714
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Removal of fluoride ions from aqueous solution using modified attapulgite as adsorbent.
    Zhang J; Xie S; Ho YS
    J Hazard Mater; 2009 Jun; 165(1-3):218-22. PubMed ID: 19013016
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Extraction of selected heavy metals using modified clays.
    Krikorian N; Martin DF
    J Environ Sci Health A Tox Hazard Subst Environ Eng; 2005; 40(3):601-8. PubMed ID: 15756971
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Removal of Cd(II) from aqueous solution by a composite hydrogel based on attapulgite.
    Wang X; Wang A
    Environ Technol; 2010 Jun; 31(7):745-53. PubMed ID: 20586236
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Removal of phenol from aqueous solution by adsorption onto OTMAC-modified attapulgite.
    Huang J; Wang X; Jin Q; Liu Y; Wang Y
    J Environ Manage; 2007 Jul; 84(2):229-36. PubMed ID: 16859824
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Adsorption characteristics of Cu(II) from aqueous solution onto poly(acrylamide)/attapulgite composite.
    Chen H; Wang A
    J Hazard Mater; 2009 Jun; 165(1-3):223-31. PubMed ID: 19008046
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Bacterial cellulose/attapulgite magnetic composites as an efficient adsorbent for heavy metal ions and dye treatment.
    Chen X; Cui J; Xu X; Sun B; Zhang L; Dong W; Chen C; Sun D
    Carbohydr Polym; 2020 Feb; 229():115512. PubMed ID: 31826502
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Removal of Cd, Cu and Zn ions from aqueous solutions using natural and Fe modified sepiolite, zeolite and palygorskite clay minerals.
    Bahabadi FN; Farpoor MH; Mehrizi MH
    Water Sci Technol; 2017 Jan; 75(2):340-349. PubMed ID: 28112661
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Layered double hydroxide (LDH)-coated attapulgite for phosphate removal from aqueous solution.
    Fang-qun G; Jian-min Z; Huo-yan W; Hong-ting Z
    Water Sci Technol; 2011; 64(11):2192-8. PubMed ID: 22156122
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Selective adsorption of tannin from flavonoids by organically modified attapulgite clay.
    Huang J; Liu Y; Wang X
    J Hazard Mater; 2008 Dec; 160(2-3):382-7. PubMed ID: 18433994
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Poly(vinyl pyridine-poly ethylene glycol methacrylate-ethylene glycol dimethacrylate) beads for heavy metal removal.
    Duran A; Soylak M; Tuncel SA
    J Hazard Mater; 2008 Jun; 155(1-2):114-20. PubMed ID: 18164127
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Use of rice straw as biosorbent for removal of Cu(II), Zn(II), Cd(II) and Hg(II) ions in industrial effluents.
    Rocha CG; Zaia DA; Alfaya RV; Alfaya AA
    J Hazard Mater; 2009 Jul; 166(1):383-8. PubMed ID: 19131165
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Exploration of remediation of acid rock drainage with clinoptilolite as sorbent in a slurry bubble column for both heavy metal capture and regeneration.
    Cui H; Li LY; Grace JR
    Water Res; 2006 Oct; 40(18):3359-66. PubMed ID: 16962631
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Removal of heavy metal ions from wastewater by chemically modified plant wastes as adsorbents: a review.
    Wan Ngah WS; Hanafiah MA
    Bioresour Technol; 2008 Jul; 99(10):3935-48. PubMed ID: 17681755
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Competitive metal binding to a silicate-immobilized humic material.
    Stark PC; Rayson GD
    J Hazard Mater; 2007 Jun; 145(1-2):203-9. PubMed ID: 17156915
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The chemically crosslinked metal-complexed chitosans for comparative adsorptions of Cu(II), Zn(II), Ni(II) and Pb(II) ions in aqueous medium.
    Chen AH; Yang CY; Chen CY; Chen CY; Chen CW
    J Hazard Mater; 2009 Apr; 163(2-3):1068-75. PubMed ID: 18774220
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Adsorptive removal of heavy metals from aqueous solution by treated sawdust (Acacia arabica).
    Meena AK; Kadirvelu K; Mishra GK; Rajagopal C; Nagar PN
    J Hazard Mater; 2008 Feb; 150(3):604-11. PubMed ID: 17600619
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.