These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
290 related articles for article (PubMed ID: 17468396)
1. Drift and breakup of spiral waves in reaction-diffusion-mechanics systems. Panfilov AV; Keldermann RH; Nash MP Proc Natl Acad Sci U S A; 2007 May; 104(19):7922-6. PubMed ID: 17468396 [TBL] [Abstract][Full Text] [Related]
2. Drift laws for spiral waves on curved anisotropic surfaces. Dierckx H; Brisard E; Verschelde H; Panfilov AV Phys Rev E Stat Nonlin Soft Matter Phys; 2013 Jul; 88(1):012908. PubMed ID: 23944539 [TBL] [Abstract][Full Text] [Related]
3. Spiral-wave dynamics depend sensitively on inhomogeneities in mathematical models of ventricular tissue. Shajahan TK; Sinha S; Pandit R Phys Rev E Stat Nonlin Soft Matter Phys; 2007 Jan; 75(1 Pt 1):011929. PubMed ID: 17358206 [TBL] [Abstract][Full Text] [Related]
4. New mechanism of spiral wave initiation in a reaction-diffusion-mechanics system. Weise LD; Panfilov AV PLoS One; 2011; 6(11):e27264. PubMed ID: 22114667 [TBL] [Abstract][Full Text] [Related]
5. Spiral wave stability in cardiac tissue with biphasic restitution. Bernus O; Verschelde H; Panfilov AV Phys Rev E Stat Nonlin Soft Matter Phys; 2003 Aug; 68(2 Pt 1):021917. PubMed ID: 14525016 [TBL] [Abstract][Full Text] [Related]
6. Emergence of spiral wave activity in a mechanically heterogeneous reaction-diffusion-mechanics system. Weise LD; Panfilov AV Phys Rev Lett; 2012 Jun; 108(22):228104. PubMed ID: 23003658 [TBL] [Abstract][Full Text] [Related]
7. Spiral waves in two-dimensional models of ventricular muscle: formation of a stationary core. Beaumont J; Davidenko N; Davidenko JM; Jalife J Biophys J; 1998 Jul; 75(1):1-14. PubMed ID: 9649363 [TBL] [Abstract][Full Text] [Related]
8. Patterns of spiral wave attenuation by low-frequency periodic planar fronts. de la Casa MA; de la Rubia FJ; Ivanov PCh Chaos; 2007 Mar; 17(1):015109. PubMed ID: 17411266 [TBL] [Abstract][Full Text] [Related]
9. Spiral waves in excitable media with negative restitution. Zemlin CW; Panfilov AV Phys Rev E Stat Nonlin Soft Matter Phys; 2001 Apr; 63(4 Pt 1):041912. PubMed ID: 11308882 [TBL] [Abstract][Full Text] [Related]
10. Measurement of large spiral and target waves in chemical reaction-diffusion-advection systems: turbulent diffusion enhances pattern formation. von Kameke A; Huhn F; Muñuzuri AP; Pérez-Muñuzuri V Phys Rev Lett; 2013 Feb; 110(8):088302. PubMed ID: 23473206 [TBL] [Abstract][Full Text] [Related]
11. Vulnerability in an excitable medium: analytical and numerical studies of initiating unidirectional propagation. Starmer CF; Biktashev VN; Romashko DN; Stepanov MR; Makarova ON; Krinsky VI Biophys J; 1993 Nov; 65(5):1775-87. PubMed ID: 8298011 [TBL] [Abstract][Full Text] [Related]
12. From local to global spatiotemporal chaos in a cardiac tissue model. Qu Z; Weiss JN; Garfinkel A Phys Rev E Stat Phys Plasmas Fluids Relat Interdiscip Topics; 2000 Jan; 61(1):727-32. PubMed ID: 11046316 [TBL] [Abstract][Full Text] [Related]
13. Pattern formation of coupled spiral waves in bilayer systems: rich dynamics and high-frequency dominance. Nie H; Gao J; Zhan M Phys Rev E Stat Nonlin Soft Matter Phys; 2011 Nov; 84(5 Pt 2):056204. PubMed ID: 22181481 [TBL] [Abstract][Full Text] [Related]
14. Termination of spiral wave breakup in a Fitzhugh-Nagumo model via short and long duration stimuli. Gray RA Chaos; 2002 Sep; 12(3):941-951. PubMed ID: 12779618 [TBL] [Abstract][Full Text] [Related]
15. Dreaming of Electrical Waves: Generative Modeling of Cardiac Excitation Waves using Diffusion Models. Baranwal T; Lebert J; Christoph J ArXiv; 2024 Jun; ():. PubMed ID: 38883235 [TBL] [Abstract][Full Text] [Related]
16. Dreaming of electrical waves: Generative modeling of cardiac excitation waves using diffusion models. Baranwal T; Lebert J; Christoph J APL Mach Learn; 2024 Sep; 2(3):036113. PubMed ID: 39364376 [TBL] [Abstract][Full Text] [Related]
17. A discrete electromechanical model for human cardiac tissue: effects of stretch-activated currents and stretch conditions on restitution properties and spiral wave dynamics. Weise LD; Panfilov AV PLoS One; 2013; 8(3):e59317. PubMed ID: 23527160 [TBL] [Abstract][Full Text] [Related]
18. Initiation and dynamics of a spiral wave around an ionic heterogeneity in a model for human cardiac tissue. Defauw A; Dawyndt P; Panfilov AV Phys Rev E Stat Nonlin Soft Matter Phys; 2013 Dec; 88(6):062703. PubMed ID: 24483482 [TBL] [Abstract][Full Text] [Related]
19. Preventing alternans-induced spiral wave breakup in cardiac tissue: an ion-channel-based approach. Allexandre D; Otani NF Phys Rev E Stat Nonlin Soft Matter Phys; 2004 Dec; 70(6 Pt 1):061903. PubMed ID: 15697398 [TBL] [Abstract][Full Text] [Related]
20. Period-2 spiral waves supported by nonmonotonic wave dispersion. Kwon O; Kim TY; Lee KJ Phys Rev E Stat Nonlin Soft Matter Phys; 2010 Oct; 82(4 Pt 2):046213. PubMed ID: 21230371 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]