These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
417 related articles for article (PubMed ID: 17468414)
1. Effects of exogenous cellulase supplementation on microbial growth and ruminal fermentation of a high-forage diet in Rusitec fermenters. Giraldo LA; Tejido ML; Ranilla MJ; Carro MD J Anim Sci; 2007 Aug; 85(8):1962-70. PubMed ID: 17468414 [TBL] [Abstract][Full Text] [Related]
2. Influence of direct-fed fibrolytic enzymes on diet digestibility and ruminal activity in sheep fed a grass hay-based diet. Giraldo LA; Tejido ML; Ranilla MJ; Ramos S; Carro MD J Anim Sci; 2008 Jul; 86(7):1617-23. PubMed ID: 18344313 [TBL] [Abstract][Full Text] [Related]
3. Effects of dilution rate and retention time of concentrate on efficiency of microbial growth, methane production, and ruminal fermentation in Rusitec fermenters. Martínez ME; Ranilla MJ; Ramos S; Tejido ML; Carro MD J Dairy Sci; 2009 Aug; 92(8):3930-8. PubMed ID: 19620676 [TBL] [Abstract][Full Text] [Related]
4. Effects of concentrate replacement by feed blocks on ruminal fermentation and microbial growth in goats and single-flow continuous-culture fermenters. Molina-Alcaide E; Pascual MR; Cantalapiedra-Hijar G; Morales-García EY; Martín-García AI J Anim Sci; 2009 Apr; 87(4):1321-33. PubMed ID: 19098232 [TBL] [Abstract][Full Text] [Related]
5. Influence of exogenous fibrolytic enzymes and fumarate on methane production, microbial growth and fermentation in Rusitec fermenters. Giraldo LA; Ranilla MJ; Tejido ML; Carro MD Br J Nutr; 2007 Oct; 98(4):753-61. PubMed ID: 17475087 [TBL] [Abstract][Full Text] [Related]
6. Effects of forage:concentrate ratio and forage type on apparent digestibility, ruminal fermentation, and microbial growth in goats. Cantalapiedra-Hijar G; Yáñez-Ruiz DR; Martín-García AI; Molina-Alcaide E J Anim Sci; 2009 Feb; 87(2):622-31. PubMed ID: 18952730 [TBL] [Abstract][Full Text] [Related]
7. Effect of the magnitude of the decrease of rumen pH on rumen fermentation in a dual-flow continuous culture system. Cerrato-Sánchez M; Calsamiglia S; Ferret A J Anim Sci; 2008 Feb; 86(2):378-83. PubMed ID: 17998434 [TBL] [Abstract][Full Text] [Related]
8. Effects of patterns of suboptimal pH on rumen fermentation in a dual-flow continuous culture system. Cerrato-Sánchez M; Calsamiglia S; Ferret A J Dairy Sci; 2007 Sep; 90(9):4368-77. PubMed ID: 17699058 [TBL] [Abstract][Full Text] [Related]
9. Changes in rumen microbial fermentation are due to a combined effect of type of diet and pH. Calsamiglia S; Cardozo PW; Ferret A; Bach A J Anim Sci; 2008 Mar; 86(3):702-11. PubMed ID: 18073289 [TBL] [Abstract][Full Text] [Related]
10. Assessment of the effects of cinnamon leaf oil on rumen microbial fermentation using two continuous culture systems. Fraser GR; Chaves AV; Wang Y; McAllister TA; Beauchemin KA; Benchaar C J Dairy Sci; 2007 May; 90(5):2315-28. PubMed ID: 17430934 [TBL] [Abstract][Full Text] [Related]
11. Comparison of fermentation of diets of variable composition and microbial populations in the rumen of sheep and Rusitec fermenters. I. Digestibility, fermentation parameters, and microbial growth. Martínez ME; Ranilla MJ; Tejido ML; Ramos S; Carro MD J Dairy Sci; 2010 Aug; 93(8):3684-98. PubMed ID: 20655438 [TBL] [Abstract][Full Text] [Related]
12. Microbial protein synthesis, ruminal digestion, microbial populations, and nitrogen balance in sheep fed diets varying in forage-to-concentrate ratio and type of forage. Ramos S; Tejido ML; Martínez ME; Ranilla MJ; Carro MD J Anim Sci; 2009 Sep; 87(9):2924-34. PubMed ID: 19465498 [TBL] [Abstract][Full Text] [Related]
13. Use of chitosans to modulate ruminal fermentation of a 50:50 forage-to-concentrate diet in sheep. Goiri I; Oregui LM; Garcia-Rodriguez A J Anim Sci; 2010 Feb; 88(2):749-55. PubMed ID: 19854994 [TBL] [Abstract][Full Text] [Related]
14. Effect of essential oil active compounds on rumen microbial fermentation and nutrient flow in in vitro systems. Castillejos L; Calsamiglia S; Ferret A J Dairy Sci; 2006 Jul; 89(7):2649-58. PubMed ID: 16772584 [TBL] [Abstract][Full Text] [Related]
15. Effects of time at suboptimal pH on rumen fermentation in a dual-flow continuous culture system. Cerrato-Sánchez M; Calsamiglia S; Ferret A J Dairy Sci; 2007 Mar; 90(3):1486-92. PubMed ID: 17297122 [TBL] [Abstract][Full Text] [Related]
16. Influence of supplemental endoglucanase or xylanase on volatile fatty acid production from ruminant feed by ruminal in vitro cultures. Tricarico JM; Dawson KA Arch Anim Nutr; 2005 Oct; 59(5):325-34. PubMed ID: 16320781 [TBL] [Abstract][Full Text] [Related]
18. Effects of Sapindus saponaria fruits on ruminal fermentation and duodenal nitrogen flow of sheep fed a tropical grass diet with and without legume. Abreu A; Carulla JE; Lascano CE; Díaz TE; Kreuzer M; Hess HD J Anim Sci; 2004 May; 82(5):1392-400. PubMed ID: 15144079 [TBL] [Abstract][Full Text] [Related]
19. Effect of exogenous fibrolytic enzymes and ammonia fiber expansion on the fermentation of wheat straw in an artificial rumen system (RUSITEC)1. Saleem AM; Ribeiro GO; Sanderson H; Alipour D; Brand T; Hünerberg M; Yang WZ; Santos LV; McAllister TA J Anim Sci; 2019 Jul; 97(8):3535-3549. PubMed ID: 31260526 [TBL] [Abstract][Full Text] [Related]
20. Effects of fiber content and particle size of forage on the flow of microbial amino acids from continuous culture fermenters. Rodríguez-Prado M; Calsamiglia S; Ferret A J Dairy Sci; 2004 May; 87(5):1413-24. PubMed ID: 15290988 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]