These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

182 related articles for article (PubMed ID: 17468893)

  • 1. In-vivo intratissue ablation by nanojoule near-infrared femtosecond laser pulses.
    Wang BG; Riemann I; Schubert H; Halbhuber KJ; Koenig K
    Cell Tissue Res; 2007 Jun; 328(3):515-20. PubMed ID: 17468893
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Corneal multiphoton microscopy and intratissue optical nanosurgery by nanojoule femtosecond near-infrared pulsed lasers.
    Wang BG; Halbhuber KJ
    Ann Anat; 2006 Sep; 188(5):395-409. PubMed ID: 16999201
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Multiphoton microscopy for monitoring intratissue femtosecond laser surgery effects.
    Wang BG; Riemann I; Schubert H; Schweitzer D; König K; Halbhuber KJ
    Lasers Surg Med; 2007 Jul; 39(6):527-33. PubMed ID: 17659583
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Morphologic and histopathologic changes in the rabbit cornea produced by femtosecond laser-assisted multilayer intrastromal ablation.
    Zhang ZY; Chu RY; Zhou XT; Dai JH; Sun XH; Hoffman MR; Zhang XR
    Invest Ophthalmol Vis Sci; 2009 May; 50(5):2147-53. PubMed ID: 19136715
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Multiphoton-mediated corneal flap generation using the 80 MHz nanojoule femtosecond near-infrared laser.
    Wang BG; Lohmann CP; Riemann I; Schubert H; Halbhuber KJ; König K
    J Refract Surg; 2008 Oct; 24(8):833-9. PubMed ID: 18856239
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Femtosecond laser corneal ablation threshold: dependence on tissue depth and laser pulse width.
    Sun H; Han M; Niemz MH; Bille JF
    Lasers Surg Med; 2007 Sep; 39(8):654-8. PubMed ID: 17886278
    [TBL] [Abstract][Full Text] [Related]  

  • 7. [Intraepithelial phototherapeutic keratectomy and alcohol delamination for recurrent corneal erosions--two minimally invasive surgical alternatives].
    Kampik D; Neumaier K; Mutsch A; Waller W; Geerling G
    Klin Monbl Augenheilkd; 2008 Apr; 225(4):276-80. PubMed ID: 18401793
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Corneal shaping and ablation of transparent media by femtosecond pulses in deep ultraviolet range.
    Vengris M; Gabryte E; Aleknavicius A; Barkauskas M; Ruksenas O; Vaiceliunaite A; Danielius R
    J Cataract Refract Surg; 2010 Sep; 36(9):1579-87. PubMed ID: 20692573
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Results of penetrating keratoplasty performed with a femtosecond laser zigzag incision initial report.
    Farid M; Kim M; Steinert RF
    Ophthalmology; 2007 Dec; 114(12):2208-12. PubMed ID: 18054639
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Intratissue surgery with 80 MHz nanojoule femtosecond laser pulses in the near infrared.
    Koenig K; Krauss O; Riemann I
    Opt Express; 2002 Feb; 10(3):171-6. PubMed ID: 19424346
    [TBL] [Abstract][Full Text] [Related]  

  • 11. New therapeutic modalities in femtosecond laser-assisted corneal surgery.
    Shousha MA; Yoo SH
    Int Ophthalmol Clin; 2010; 50(3):149-60. PubMed ID: 20611025
    [No Abstract]   [Full Text] [Related]  

  • 12. Femtosecond lasers in ophthalmology.
    Soong HK; Malta JB
    Am J Ophthalmol; 2009 Feb; 147(2):189-197.e2. PubMed ID: 18930447
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Applications of the femtosecond laser in corneal refractive surgery.
    Kim P; Sutton GL; Rootman DS
    Curr Opin Ophthalmol; 2011 Jul; 22(4):238-44. PubMed ID: 21537186
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A comparison of corneal cellular responses after 213-nm compared with 193-nm laser photorefractive keratectomy in rabbits.
    Sanders T; Pujara T; Camelo S; Lai CT; Van Saarloos P; Beazley L; Rodger J
    Cornea; 2009 May; 28(4):434-40. PubMed ID: 19411963
    [TBL] [Abstract][Full Text] [Related]  

  • 15. [Cut quality of a new femtosecond laser system].
    Winkler von Mohrenfels C; Khoramnia R; Maier MM; Pfäffl W; Hölzlwimmer G; Lohmann C
    Klin Monbl Augenheilkd; 2009 Jun; 226(6):470-4. PubMed ID: 19399716
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Femtosecond laser-assisted inverted mushroom keratoplasty.
    Cheng YY; Tahzib NG; van Rij G; van Cleynenbreugel H; Pels E; Hendrikse F; Nuijts R
    Cornea; 2008 Jul; 27(6):679-85. PubMed ID: 18580260
    [TBL] [Abstract][Full Text] [Related]  

  • 17. [Reduction of astigmatism by arcuate incisions using the femtosecond laser after corneal transplantation].
    Kiraly L; Herrmann C; Amm M; Duncker G
    Klin Monbl Augenheilkd; 2008 Jan; 225(1):70-4. PubMed ID: 18236374
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Surface ablation of corneal stroma with few-cycle laser pulses at 800 nm.
    Hoffart L; Lassonde P; Légaré F; Vidal F; Sanner N; Utéza O; Sentis M; Kieffer JC; Brunette I
    Opt Express; 2011 Jan; 19(1):230-40. PubMed ID: 21263561
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The effect of free-electron laser pulse structure on mid-infrared soft-tissue ablation: biological effects.
    Mackanos MA; Kozub JA; Hachey DL; Joos KM; Ellis DL; Jansen ED
    Phys Med Biol; 2005 Apr; 50(8):1885-99. PubMed ID: 15815102
    [TBL] [Abstract][Full Text] [Related]  

  • 20. [Femtosecond laser application in keratoplasty--current view].
    Wylegała E; Milka M; Tarnawska D; Dobrowolski D
    Klin Oczna; 2008; 110(4-6):207-10. PubMed ID: 18655464
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.