BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

248 related articles for article (PubMed ID: 17469091)

  • 21. Activation of ethane C-H and C-C bonds by gas phase Th+ and U+: a theoretical study.
    Di Santo E; Michelini MC; Russo N
    J Phys Chem A; 2009 Dec; 113(52):14699-705. PubMed ID: 20028168
    [TBL] [Abstract][Full Text] [Related]  

  • 22. The activation strain model and molecular orbital theory: understanding and designing chemical reactions.
    Fernández I; Bickelhaupt FM
    Chem Soc Rev; 2014 Jul; 43(14):4953-67. PubMed ID: 24699791
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Thermodynamic trends in carbon-hydrogen bond activation in nitriles and chloroalkanes at rhodium.
    Evans ME; Li T; Vetter AJ; Rieth RD; Jones WD
    J Org Chem; 2009 Sep; 74(18):6907-14. PubMed ID: 19743881
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Topological analysis of the electronic charge density in the ethene protonation reaction catalyzed by acidic zeolite.
    Zalazar MF; Peruchena NM
    J Phys Chem A; 2007 Aug; 111(32):7848-59. PubMed ID: 17658733
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Single-molecule force spectroscopy measurements of bond elongation during a bimolecular reaction.
    Koti Ainavarapu SR; Wiita AP; Dougan L; Uggerud E; Fernandez JM
    J Am Chem Soc; 2008 May; 130(20):6479-87. PubMed ID: 18433129
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Remarkable metal counterion effect on the internucleotide J-couplings and chemical shifts of the N-H...N hydrogen bonds in the W-C base pairs.
    Li H; Cukier RI; Bu Y
    J Phys Chem B; 2008 Jul; 112(30):9174-81. PubMed ID: 18598072
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Mechanistic aspects of propene epoxidation by hydrogen peroxide. Catalytic role of water molecules, external electric field, and zeolite framework of TS-1.
    Stare J; Henson NJ; Eckert J
    J Chem Inf Model; 2009 Apr; 49(4):833-46. PubMed ID: 19267473
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Hydroxylation mechanism of methane and its derivatives over designed methane monooxygenase model with peroxo dizinc core.
    Li CQ; Yang HQ; Xu J; Hu CW
    Org Biomol Chem; 2012 May; 10(19):3924-31. PubMed ID: 22495218
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Proton-transfer and H2-elimination reactions of main-group hydrides EH4- (E = B, Al, Ga) with alcohols.
    Filippov OA; Filin AM; Tsupreva VN; Belkova NV; Lledós A; Ujaque G; Epstein LM; Shubina ES
    Inorg Chem; 2006 Apr; 45(7):3086-96. PubMed ID: 16562965
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Combined experimental and computational studies on carbon-carbon reductive elimination from Bis(hydrocarbyl) complexes of (PCP)Ir.
    Ghosh R; Emge TJ; Krogh-Jespersen K; Goldman AS
    J Am Chem Soc; 2008 Aug; 130(34):11317-27. PubMed ID: 18680287
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Transition metal-carbon complexes. A theoretical study.
    Krapp A; Pandey KK; Frenking G
    J Am Chem Soc; 2007 Jun; 129(24):7596-610. PubMed ID: 17530845
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Experimental and theoretical examination of C-CN and C-H bond activations of acetonitrile using zerovalent nickel.
    Ateşin TA; Li T; Lachaize S; Brennessel WW; García JJ; Jones WD
    J Am Chem Soc; 2007 Jun; 129(24):7562-9. PubMed ID: 17521188
    [TBL] [Abstract][Full Text] [Related]  

  • 33. A dimensionless reaction coordinate for quantifying the lateness of transition states.
    Manz TA; Sholl DS
    J Comput Chem; 2010 May; 31(7):1528-41. PubMed ID: 19908292
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Density functional theory study of the reaction mechanism for competitive carbon-hydrogen and carbon-halogen bond activations catalyzed by transition metal complexes.
    Yang X; Hall MB
    J Phys Chem A; 2009 Mar; 113(10):2152-7. PubMed ID: 19166281
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Synthesis of beta-lactams by Ag+-induced ring expansion of 1-hydroxycyclopropylamines: a theoretical analysis.
    Campomanes P; Menéndez MI; Cárdenas-Jirón GI; Sordo TL
    J Phys Chem A; 2005 Sep; 109(34):7822-31. PubMed ID: 16834160
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Optimizing the structures of minimum and transition state on the free energy surface.
    Yang SY; Hristov I; Fleurat-Lessard P; Ziegler T
    J Phys Chem A; 2005 Jan; 109(1):197-204. PubMed ID: 16839106
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Dynamics of 1,3-dipolar cycloadditions: energy partitioning of reactants and quantitation of synchronicity.
    Xu L; Doubleday CE; Houk KN
    J Am Chem Soc; 2010 Mar; 132(9):3029-37. PubMed ID: 20148587
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Catalytic Carbon-Halogen Bond Activation:  Trends in Reactivity, Selectivity, and Solvation.
    de Jong GT; Bickelhaupt FM
    J Chem Theory Comput; 2007 Mar; 3(2):514-29. PubMed ID: 26637032
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Experimental bond critical point and local energy density properties determined for Mn-O, Fe-O, and Co-O bonded interactions for tephroite, Mn2SiO4, fayalite, Fe2SiO4, and Co2SiO4 olivine and selected organic metal complexes: comparison with properties calculated for non-transition and transition metal M-O bonded interactions for silicates and oxides.
    Gibbs GV; Downs RT; Cox DF; Rosso KM; Ross NL; Kirfel A; Lippmann T; Morgenroth W; Crawford TD
    J Phys Chem A; 2008 Sep; 112(37):8811-23. PubMed ID: 18714960
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Electronic properties of multifurcated bent hydrogen bonds CH3...Y and CH2...Y.
    Li AY; Yan XH
    Phys Chem Chem Phys; 2007 Dec; 9(47):6263-71. PubMed ID: 18046475
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 13.