BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

289 related articles for article (PubMed ID: 1746953)

  • 1. Possible mechanisms underlying the slow lactose fermentation phenotype in Shigella spp.
    Ito H; Kido N; Arakawa Y; Ohta M; Sugiyama T; Kato N
    Appl Environ Microbiol; 1991 Oct; 57(10):2912-7. PubMed ID: 1746953
    [TBL] [Abstract][Full Text] [Related]  

  • 2. I-CeuI fragment analysis of the Shigella species: evidence for large-scale chromosome rearrangement in S. dysenteriae and S. flexneri.
    Shu S; Setianingrum E; Zhao L; Li Z; Xu H; Kawamura Y; Ezaki T
    FEMS Microbiol Lett; 2000 Jan; 182(1):93-8. PubMed ID: 10612738
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Gene cloning and characterization of alanine racemases from Shigella dysenteriae, Shigella boydii, Shigella flexneri, and Shigella sonnei.
    Yokoigawa K; Hirasawa R; Ueno H; Okubo Y; Umesako S; Soda K
    Biochem Biophys Res Commun; 2001 Nov; 288(3):676-84. PubMed ID: 11676496
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Salt tolerance of lactose-grown Vibrio parahaemolyticus carrying Escherichia coli lac genes.
    Datta AR; MacQuillan AM
    Appl Environ Microbiol; 1987 Feb; 53(2):466-9. PubMed ID: 3105458
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Shigella strains are not clones of Escherichia coli but sister species in the genus Escherichia.
    Zuo G; Xu Z; Hao B
    Genomics Proteomics Bioinformatics; 2013 Feb; 11(1):61-5. PubMed ID: 23395177
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The aerobactin iron transport system genes in Shigella flexneri are present within a pathogenicity island.
    Vokes SA; Reeves SA; Torres AG; Payne SM
    Mol Microbiol; 1999 Jul; 33(1):63-73. PubMed ID: 10411724
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Studies on the utilization of lactose by Corynebacterium glutamicum, bearing the lactose operon of Escherichia coli.
    Brabetz W; Liebl W; Schleifer KH
    Arch Microbiol; 1991; 155(6):607-12. PubMed ID: 1953301
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Phosphatidylethanolamine is required for in vivo function of the membrane-associated lactose permease of Escherichia coli.
    Bogdanov M; Dowhan W
    J Biol Chem; 1995 Jan; 270(2):732-9. PubMed ID: 7822303
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Delayed lactose utilization among Shiga toxin-producing Escherichia coli of serogroup O121.
    Gill A; McMahon T; Dussault F; Jinneman K; Lindsey R; Martin H; Stoneburg D; Strockbine N; Wetherington J; Feng P
    Food Microbiol; 2022 Apr; 102():103903. PubMed ID: 34809935
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Characterization of beta-galactosidase--lactose-permease chimaeras of Escherichia coli.
    Griesser HW; Müller-Hill B; Overath P
    Eur J Biochem; 1983 Dec; 137(3):567-72. PubMed ID: 6363063
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The effect of the lacY gene on the induction of IPTG inducible promoters, studied in Escherichia coli and Pseudomonas fluorescens.
    Hansen LH; Knudsen S; Sørensen SJ
    Curr Microbiol; 1998 Jun; 36(6):341-7. PubMed ID: 9608745
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Lactose utilization by Saccharomyces cerevisiae strains expressing Kluyveromyces lactis LAC genes.
    Rubio-Texeira M; Arévalo-Rodríguez M; Lequerica JL; Polaina J
    J Biotechnol; 2001 Nov; 84(2):97-106. PubMed ID: 11090681
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Comparison of DNA probes and the Sereny test for identification of invasive Shigella and Escherichia coli strains.
    Wood PK; Morris JG; Small PL; Sethabutr O; Toledo MR; Trabulsi L; Kaper JB
    J Clin Microbiol; 1986 Sep; 24(3):498-500. PubMed ID: 3531233
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Lactose metabolism in Lactobacillus bulgaricus: analysis of the primary structure and expression of the genes involved.
    Leong-Morgenthaler P; Zwahlen MC; Hottinger H
    J Bacteriol; 1991 Mar; 173(6):1951-7. PubMed ID: 1705929
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Relationship among Shigella spp. and enteroinvasive Escherichia coli (EIEC) and their differentiation.
    Ud-Din A; Wahid S
    Braz J Microbiol; 2014; 45(4):1131-8. PubMed ID: 25763015
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The anomeric specificity of beta-galactosidase and lac permease from Escherichia coli.
    Huber RE; Hurlburt KL; Turner CL
    Can J Biochem; 1981 Feb; 59(2):100-5. PubMed ID: 6786712
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Autoregulation of lactose uptake through the LacY permease by enzyme IIAGlc of the PTS in Escherichia coli K-12.
    Hogema BM; Arents JC; Bader R; Postma PW
    Mol Microbiol; 1999 Mar; 31(6):1825-33. PubMed ID: 10209753
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Specific detection of Escherichia coli and Shigella species using fragments of genes coding for beta-glucuronidase.
    Cleuziat P; Robert-Baudouy J
    FEMS Microbiol Lett; 1990 Nov; 60(3):315-22. PubMed ID: 1982103
    [TBL] [Abstract][Full Text] [Related]  

  • 19. In vivo expression of the lacY gene in two segments leads to functional lac permease.
    Bibi E; Kaback HR
    Proc Natl Acad Sci U S A; 1990 Jun; 87(11):4325-9. PubMed ID: 2190220
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Highly efficient assimilation of lactose by a metabolically engineered strain of Saccharomyces cerevisiae.
    Rubio-Texeira M; Castrillo JI; Adam AC; Ugalde UO; Polaina J
    Yeast; 1998 Jun; 14(9):827-37. PubMed ID: 9818720
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 15.