These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

145 related articles for article (PubMed ID: 17469665)

  • 1. Use of natural clinoptilolite to improve water quality: sorption and selectivity studies of lead(II), copper(II), zinc(II), and nickel(II).
    Oter O; Akcay H
    Water Environ Res; 2007 Mar; 79(3):329-35. PubMed ID: 17469665
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Natural Jordanian zeolite: removal of heavy metal ions from water samples using column and batch methods.
    Baker HM; Massadeh AM; Younes HA
    Environ Monit Assess; 2009 Oct; 157(1-4):319-30. PubMed ID: 18830802
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Effective removal of Ni(II) from aqueous solutions by modification of nano particles of clinoptilolite with dimethylglyoxime.
    Nezamzadeh-Ejhieh A; Kabiri-Samani M
    J Hazard Mater; 2013 Sep; 260():339-49. PubMed ID: 23792926
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Simultaneous removal of Cu, Mn and Zn from drinking water with the use of clinoptilolite and its Fe-modified form.
    Doula MK
    Water Res; 2009 Aug; 43(15):3659-72. PubMed ID: 19576609
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Use of clinoptilolite for the removal of nickel ions from water: kinetics and thermodynamics.
    Argun ME
    J Hazard Mater; 2008 Feb; 150(3):587-95. PubMed ID: 17561344
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Ion exchange of Pb(2+), Cu(2+), Fe(3+), and Cr(3+) on natural clinoptilolite: selectivity determination and influence of acidity on metal uptake.
    Inglezakis VJ; Loizidou MD; Grigoropoulou HP
    J Colloid Interface Sci; 2003 May; 261(1):49-54. PubMed ID: 12725823
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Efficiency of chemically modified low cost adsorbents for the removal of heavy metals from waste water: a comparative study.
    Saravanane R; Sundararajan T; Reddy SS
    Indian J Environ Health; 2002 Apr; 44(2):78-87. PubMed ID: 14503378
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Adsorption behavior of heavy metals onto chemically modified sugarcane bagasse.
    Lal Homagai P; Ghimire KN; Inoue K
    Bioresour Technol; 2010 Mar; 101(6):2067-9. PubMed ID: 20006923
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Novel kinetic model of the removal of divalent heavy metal ions from aqueous solutions by natural clinoptilolite.
    Jovanovic M; Rajic N; Obradovic B
    J Hazard Mater; 2012 Sep; 233-234():57-64. PubMed ID: 22818175
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Competitive and non-competitive zinc, copper and lead biosorption from aqueous solutions onto flax fibers.
    Kajeiou M; Alem A; Mezghich S; Ahfir ND; Mignot M; Devouge-Boyer C; Pantet A
    Chemosphere; 2020 Dec; 260():127505. PubMed ID: 32683021
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Silver-modified clinoptilolite for the removal of Escherichia coli and heavy metals from aqueous solutions.
    Akhigbe L; Ouki S; Saroj D; Lim XM
    Environ Sci Pollut Res Int; 2014 Sep; 21(18):10940-8. PubMed ID: 24756684
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The removal of heavy metal cations by natural zeolites.
    Erdem E; Karapinar N; Donat R
    J Colloid Interface Sci; 2004 Dec; 280(2):309-14. PubMed ID: 15533402
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Application of mulch for treating metals in urban runoff: batch and column test.
    Jang A; Lee SW; Seo Y; Kim KW; Kim IS; Bishop PL
    Water Sci Technol; 2007; 55(1-2):95-103. PubMed ID: 17305128
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Kinetics of heavy metal ions removal by use of natural zeolite.
    Panayotova M; Velikov B
    J Environ Sci Health A Tox Hazard Subst Environ Eng; 2002; 37(2):139-47. PubMed ID: 11846275
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Self-purification of marine environments for heavy metals: a study on removal of lead(II) and copper(II) by cuttlebone.
    Dobaradaran S; Nabipour I; Keshtkar M; Ghasemi FF; Nazarialamdarloo T; Khalifeh F; Poorhosein M; Abtahi M; Saeedi R
    Water Sci Technol; 2017 Jan; 75(2):474-481. PubMed ID: 28112674
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Study of the selection mechanism of heavy metal (Pb2+, Cu2+, Ni2+, and Cd2+) adsorption on clinoptilolite.
    Sprynskyy M; Buszewski B; Terzyk AP; Namieśnik J
    J Colloid Interface Sci; 2006 Dec; 304(1):21-8. PubMed ID: 16989853
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Heavy metal removal with Mexican clinoptilolite: multi-component ionic exchange.
    Vaca Mier M; López Callejas R; Gehr R; Jiménez Cisneros BE; Alvarez PJ
    Water Res; 2001 Feb; 35(2):373-8. PubMed ID: 11228988
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The use of clinoptilolite and its sodium form for removal of radioactive cesium, and strontium from nuclear wastewater and Pb2+, Ni2+, Cd2+, Ba2+ from municipal wastewater.
    Faghihian H; Marageh MG; Kazemian H
    Appl Radiat Isot; 1999 Apr; 50(4):655-60. PubMed ID: 10101831
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Lead sorption by a Mexican, clinoptilolite-rich tuff.
    Llanes-Monter MM; Olguín MT; Solache-Ríos MJ
    Environ Sci Pollut Res Int; 2007 Sep; 14(6):397-403. PubMed ID: 17993223
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Adsorption of heavy metals on natural zeolites: A review.
    Velarde L; Nabavi MS; Escalera E; Antti ML; Akhtar F
    Chemosphere; 2023 Jul; 328():138508. PubMed ID: 36972873
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.