BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

156 related articles for article (PubMed ID: 17469830)

  • 1. Conductive polymer brushes of regioregular head-to-tail poly(3-alkylthiophenes) via catalyst-transfer surface-initiated polycondensation.
    Senkovskyy V; Khanduyeva N; Komber H; Oertel U; Stamm M; Kuckling D; Kiriy A
    J Am Chem Soc; 2007 May; 129(20):6626-32. PubMed ID: 17469830
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Catalyst-transfer polycondensation. mechanism of Ni-catalyzed chain-growth polymerization leading to well-defined poly(3-hexylthiophene).
    Miyakoshi R; Yokoyama A; Yokozawa T
    J Am Chem Soc; 2005 Dec; 127(49):17542-7. PubMed ID: 16332106
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Chain-growth polycondensation for well-defined condensation polymers and polymer architecture.
    Yokozawa T; Yokoyama A
    Chem Rec; 2005; 5(1):47-57. PubMed ID: 15806548
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Formation of conjugated polymer brushes by surface-initiated catalyst-transfer polycondensation.
    Sontag SK; Marshall N; Locklin J
    Chem Commun (Camb); 2009 Jun; (23):3354-6. PubMed ID: 19503868
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Surface engineering using Kumada catalyst-transfer polycondensation (KCTP): preparation and structuring of poly(3-hexylthiophene)-based graft copolymer brushes.
    Khanduyeva N; Senkovskyy V; Beryozkina T; Horecha M; Stamm M; Uhrich C; Riede M; Leo K; Kiriy A
    J Am Chem Soc; 2009 Jan; 131(1):153-61. PubMed ID: 19128176
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Patterned polyfluorene surfaces by functionalization of nanoimprinted polymeric features.
    Beinhoff M; Appapillai AT; Underwood LD; Frommer JE; Carter KR
    Langmuir; 2006 Mar; 22(6):2411-4. PubMed ID: 16519429
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Advances in molecular design and synthesis of regioregular polythiophenes.
    Osaka I; McCullough RD
    Acc Chem Res; 2008 Sep; 41(9):1202-14. PubMed ID: 18729480
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Ideal spread monolayer and multilayer formation of fully hydrophobic polythiophenes via liquid crystal hybridization on water.
    Nagano S; Kodama S; Seki T
    Langmuir; 2008 Sep; 24(18):10498-504. PubMed ID: 18717579
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Controlled catalyst transfer polycondensation and surface-initiated polymerization of a p-phenyleneethynylene-based monomer.
    Kang S; Ono RJ; Bielawski CW
    J Am Chem Soc; 2013 Apr; 135(13):4984-7. PubMed ID: 23521089
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Rapid growth of polymer brushes from immobilized initiators.
    Bao Z; Bruening ML; Baker GL
    J Am Chem Soc; 2006 Jul; 128(28):9056-60. PubMed ID: 16834378
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Catalyst-transfer polycondensation for the synthesis of poly(p-phenylene) with controlled molecular weight and low polydispersity.
    Miyakoshi R; Shimono K; Yokoyama A; Yokozawa T
    J Am Chem Soc; 2006 Dec; 128(50):16012-3. PubMed ID: 17165735
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Surface-initiated polymerization on laser-patterned templates: morphological scaling of nanoconfined polymer brushes.
    Mathieu M; Friebe A; Franzka S; Ulbricht M; Hartmann N
    Langmuir; 2009 Oct; 25(20):12393-8. PubMed ID: 19685895
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Microparticle-supported conjugated polyelectrolyte brushes prepared by surface-initiated kumada catalyst transfer polycondensation for sensor applications.
    Tkachov R; Senkovskyy V; Oertel U; Synytska A; Horecha M; Kiriy A
    Macromol Rapid Commun; 2010 Dec; 31(24):2146-50. PubMed ID: 21567643
    [TBL] [Abstract][Full Text] [Related]  

  • 14. "Hairy" poly(3-hexylthiophene) particles prepared via surface-initiated Kumada catalyst-transfer polycondensation.
    Senkovskyy V; Tkachov R; Beryozkina T; Komber H; Oertel U; Horecha M; Bocharova V; Stamm M; Gevorgyan SA; Krebs FC; Kiriy A
    J Am Chem Soc; 2009 Nov; 131(45):16445-53. PubMed ID: 19860410
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Completely aqueous procedure for the growth of polymer brushes on polymeric substrates.
    Jain P; Dai J; Grajales S; Saha S; Baker GL; Bruening ML
    Langmuir; 2007 Nov; 23(23):11360-5. PubMed ID: 17918978
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Grafting acrylic polymers from flat nickel and copper surfaces by surface-initiated atom transfer radical polymerization.
    Chen R; Zhu S; Maclaughlin S
    Langmuir; 2008 Jun; 24(13):6889-96. PubMed ID: 18507417
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Surface-initiated Kumada catalyst-transfer polycondensation of poly(9,9-dioctylfluorene) from organosilica particles: chain-confinement promoted beta-phase formation.
    Tkachov R; Senkovskyy V; Horecha M; Oertel U; Stamm M; Kiriy A
    Chem Commun (Camb); 2010 Mar; 46(9):1425-7. PubMed ID: 20162136
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Growth and structure of surface-initiated poly(n-alkylnorbornene) films.
    Berron BJ; Graybill EP; Jennings GK
    Langmuir; 2007 Nov; 23(23):11651-5. PubMed ID: 17929844
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Surface-confined nickel mediated cross-coupling reactions: characterization of initiator environment in Kumada catalyst-transfer polycondensation.
    Sontag SK; Sheppard GR; Usselman NM; Marshall N; Locklin J
    Langmuir; 2011 Oct; 27(19):12033-41. PubMed ID: 21875096
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Random catalyst walking along polymerized poly(3-hexylthiophene) chains in Kumada catalyst-transfer polycondensation.
    Tkachov R; Senkovskyy V; Komber H; Sommer JU; Kiriy A
    J Am Chem Soc; 2010 Jun; 132(22):7803-10. PubMed ID: 20465260
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.