These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
192 related articles for article (PubMed ID: 17469840)
1. Evaluation of biosurfactant production from various agricultural residues by Lactobacillus pentosus. Moldes AB; Torrado AM; Barral MT; Domínguez JM J Agric Food Chem; 2007 May; 55(11):4481-6. PubMed ID: 17469840 [TBL] [Abstract][Full Text] [Related]
2. Stability and emulsifying capacity of biosurfactants obtained from lignocellulosic sources using Lactobacillus pentosus. Portilla-Rivera O; Torrado A; Domínguez JM; Moldes AB J Agric Food Chem; 2008 Sep; 56(17):8074-80. PubMed ID: 18707111 [TBL] [Abstract][Full Text] [Related]
3. Development of a factorial design to study the effect of the major hemicellulosic sugars on the production of surface-active compounds by L. pentosus. Portilla-Rivera OM; Torrado-Agrasar A; Carballo J; Domínguez JM; Moldes AB J Agric Food Chem; 2009 Oct; 57(19):9057-62. PubMed ID: 19807160 [TBL] [Abstract][Full Text] [Related]
4. Influence of the metabolism pathway on lactic acid production from hemicellulosic trimming vine shoots hydrolyzates using Lactobacillus pentosus. Bustos G; Moldes AB; Cruz JM; Domínguez JM Biotechnol Prog; 2005; 21(3):793-8. PubMed ID: 15932258 [TBL] [Abstract][Full Text] [Related]
5. Biotechnological production of phenyllactic acid and biosurfactants from trimming vine shoot hydrolyzates by microbial coculture fermentation. Rodríguez-Pazo N; Salgado JM; Cortés-Diéguez S; Domínguez JM Appl Biochem Biotechnol; 2013 Apr; 169(7):2175-88. PubMed ID: 23417349 [TBL] [Abstract][Full Text] [Related]
6. Complete bioconversion of hemicellulosic sugars from agricultural residues into lactic acid by Lactobacillus pentosus. Moldes AB; Torrado A; Converti A; Domínguez JM Appl Biochem Biotechnol; 2006 Dec; 135(3):219-28. PubMed ID: 17299209 [TBL] [Abstract][Full Text] [Related]
7. Lactic acid production by Lactobacillus sp. RKY2 in a cell-recycle continuous fermentation using lignocellulosic hydrolyzates as inexpensive raw materials. Wee YJ; Ryu HW Bioresour Technol; 2009 Sep; 100(18):4262-70. PubMed ID: 19394215 [TBL] [Abstract][Full Text] [Related]
8. Comparison between different hydrolysis processes of vine-trimming waste to obtain hemicellulosic sugars for further lactic acid conversion. Moldes AB; Bustos G; Torrado A; Domínguez JM Appl Biochem Biotechnol; 2007 Dec; 143(3):244-56. PubMed ID: 18057452 [TBL] [Abstract][Full Text] [Related]
9. Ex situ treatment of hydrocarbon-contaminated soil using biosurfactants from Lactobacillus pentosus. Moldes AB; Paradelo R; Rubinos D; Devesa-Rey R; Cruz JM; Barral MT J Agric Food Chem; 2011 Sep; 59(17):9443-7. PubMed ID: 21797277 [TBL] [Abstract][Full Text] [Related]
10. Minerals and organic nitrogen present in grape marc hydrolyzates enhance xylose consumption by Lactobacillus pentosus. Rivera OM; Torrado AM; Moldes AB; Domínguez JM Appl Biochem Biotechnol; 2009 Feb; 152(2):262-74. PubMed ID: 18581267 [TBL] [Abstract][Full Text] [Related]
11. Reduction of water repellence of hydrophobic plant substrates using biosurfactant produced from hydrolyzed grape marc. Paradelo R; Moldes AB; Dominguez JM; Barral MT J Agric Food Chem; 2009 Jun; 57(11):4895-9. PubMed ID: 19422217 [TBL] [Abstract][Full Text] [Related]
12. An economic approach for L-(+) lactic acid fermentation by Lactobacillus amylophilus GV6 using inexpensive carbon and nitrogen sources. Altaf M; Venkateshwar M; Srijana M; Reddy G J Appl Microbiol; 2007 Aug; 103(2):372-80. PubMed ID: 17650197 [TBL] [Abstract][Full Text] [Related]
13. Evaluation of biosurfactant obtained from Lactobacillus pentosus as foaming agent in froth flotation. Vecino X; Devesa-Rey R; Cruz JM; Moldes AB J Environ Manage; 2013 Oct; 128():655-60. PubMed ID: 23845959 [TBL] [Abstract][Full Text] [Related]
14. Fermentative production of lactic acid from biomass: an overview on process developments and future perspectives. John RP; Nampoothiri KM; Pandey A Appl Microbiol Biotechnol; 2007 Mar; 74(3):524-34. PubMed ID: 17225102 [TBL] [Abstract][Full Text] [Related]
15. Study of the synergistic effects of salinity, pH, and temperature on the surface-active properties of biosurfactants produced by Lactobacillus pentosus. Bello XV; Devesa-Rey R; Cruz JM; Moldes AB J Agric Food Chem; 2012 Feb; 60(5):1258-65. PubMed ID: 22239611 [TBL] [Abstract][Full Text] [Related]
16. Utilization of rice bran as nutrient source for fermentative lactic acid production. Gao MT; Kaneko M; Hirata M; Toorisaka E; Hano T Bioresour Technol; 2008 Jun; 99(9):3659-64. PubMed ID: 17890081 [TBL] [Abstract][Full Text] [Related]
17. Lactic Acid and Biosurfactants Production from Residual Cellulose Films. Portilla Rivera OM; Arzate Martínez G; Jarquín Enríquez L; Vázquez Landaverde PA; Domínguez González JM Appl Biochem Biotechnol; 2015 Nov; 177(5):1099-114. PubMed ID: 26293409 [TBL] [Abstract][Full Text] [Related]
18. Lignocellulosic residues: biodegradation and bioconversion by fungi. Sánchez C Biotechnol Adv; 2009; 27(2):185-94. PubMed ID: 19100826 [TBL] [Abstract][Full Text] [Related]
19. Optimization of extraction conditions and fatty acid characterization of Lactobacillus pentosus cell-bound biosurfactant/bioemulsifier. Vecino X; Barbosa-Pereira L; Devesa-Rey R; Cruz JM; Moldes AB J Sci Food Agric; 2015 Jan; 95(2):313-20. PubMed ID: 24798413 [TBL] [Abstract][Full Text] [Related]
20. Use of response surface optimization for the production of biosurfactant from Rhodococcus spp. MTCC 2574. Mutalik SR; Vaidya BK; Joshi RM; Desai KM; Nene SN Bioresour Technol; 2008 Nov; 99(16):7875-80. PubMed ID: 18511269 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]