These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
213 related articles for article (PubMed ID: 17470147)
1. The stomatal response to evaporative demand persists at night in Ricinus communis plants with high nocturnal conductance. Barbour MM; Buckley TN Plant Cell Environ; 2007 Jun; 30(6):711-21. PubMed ID: 17470147 [TBL] [Abstract][Full Text] [Related]
2. Photosynthesis affects following night leaf conductance in Vicia faba. Easlon HM; Richards JH Plant Cell Environ; 2009 Jan; 32(1):58-63. PubMed ID: 19076531 [TBL] [Abstract][Full Text] [Related]
3. The role of abscisic acid in disturbed stomatal response characteristics of Tradescantia virginiana during growth at high relative air humidity. Nejad AR; van Meeteren U J Exp Bot; 2007; 58(3):627-36. PubMed ID: 17175553 [TBL] [Abstract][Full Text] [Related]
4. Stomatal lock-open, a consequence of epidermal cell death, follows transient suppression of stomatal opening in barley attacked by Blumeria graminis. Prats E; Gay AP; Mur LA; Thomas BJ; Carver TL J Exp Bot; 2006; 57(10):2211-26. PubMed ID: 16793847 [TBL] [Abstract][Full Text] [Related]
5. Acclimation of leaf hydraulic conductance and stomatal conductance of Pinus taeda (loblolly pine) to long-term growth in elevated CO(2) (free-air CO(2) enrichment) and N-fertilization. Domec JC; Palmroth S; Ward E; Maier CA; Thérézien M; Oren R Plant Cell Environ; 2009 Nov; 32(11):1500-12. PubMed ID: 19558405 [TBL] [Abstract][Full Text] [Related]
6. Effects of CO2 on stomatal conductance: do stomata open at very high CO2 concentrations? Wheeler RM; Mackowiak CL; Yorio NC; Sager JC Ann Bot; 1999 Mar; 83(3):243-51. PubMed ID: 11541549 [TBL] [Abstract][Full Text] [Related]
7. A new measurement technique reveals rapid post-illumination changes in the carbon isotope composition of leaf-respired CO2. Barbour MM; McDowell NG; Tcherkez G; Bickford CP; Hanson DT Plant Cell Environ; 2007 Apr; 30(4):469-82. PubMed ID: 17324233 [TBL] [Abstract][Full Text] [Related]
8. Interactive effects of soil water deficit and air vapour pressure deficit on mesophyll conductance to CO2 in Vitis vinifera and Olea europaea. Perez-Martin A; Flexas J; Ribas-Carbó M; Bota J; Tomás M; Infante JM; Diaz-Espejo A J Exp Bot; 2009; 60(8):2391-405. PubMed ID: 19457982 [TBL] [Abstract][Full Text] [Related]
9. Soil nitrogen limitation does not impact nighttime water loss in Populus. Howard AR; Donovan LA Tree Physiol; 2010 Jan; 30(1):23-31. PubMed ID: 19959599 [TBL] [Abstract][Full Text] [Related]
10. Dynamics of adaptation of stomatal behaviour to moderate or high relative air humidity in Tradescantia virginiana. Rezaei Nejad A; van Meeteren U J Exp Bot; 2008; 59(2):289-301. PubMed ID: 18238802 [TBL] [Abstract][Full Text] [Related]
11. Magnitude of nighttime transpiration does not affect plant growth or nutrition in well-watered Arabidopsis. Christman MA; Donovan LA; Richards JH Physiol Plant; 2009 Jul; 136(3):264-73. PubMed ID: 19453501 [TBL] [Abstract][Full Text] [Related]
12. Inter- and intra-specific variation in nocturnal water transport in Eucalyptus. Phillips NG; Lewis JD; Logan BA; Tissue DT Tree Physiol; 2010 May; 30(5):586-96. PubMed ID: 20332372 [TBL] [Abstract][Full Text] [Related]
13. Effects of hydraulic architecture and spatial variation in light on mean stomatal conductance of tree branches and crowns. Ewers BE; Oren R; Kim HS; Bohrer G; Lai CT Plant Cell Environ; 2007 Apr; 30(4):483-96. PubMed ID: 17324234 [TBL] [Abstract][Full Text] [Related]
14. Stomatal regulation by microclimate and tree water relations: interpreting ecophysiological field data with a hydraulic plant model. Zweifel R; Steppe K; Sterck FJ J Exp Bot; 2007; 58(8):2113-31. PubMed ID: 17490998 [TBL] [Abstract][Full Text] [Related]
15. Comparing model predictions and experimental data for the response of stomatal conductance and guard cell turgor to manipulations of cuticular conductance, leaf-to-air vapour pressure difference and temperature: feedback mechanisms are able to account for all observations. Eamus D; Taylor DT; Macinnis-Ng CM; Shanahan S; De Silva L Plant Cell Environ; 2008 Mar; 31(3):269-77. PubMed ID: 18088329 [TBL] [Abstract][Full Text] [Related]
16. Seasonal evolution of diffusional limitations and photosynthetic capacity in olive under drought. Diaz-Espejo A; Nicolás E; Fernández JE Plant Cell Environ; 2007 Aug; 30(8):922-33. PubMed ID: 17617820 [TBL] [Abstract][Full Text] [Related]
17. Adjustments of water use efficiency by stomatal regulation during drought and recovery in the drought-adapted Vitis hybrid Richter-110 (V. berlandieri x V. rupestris). Pou A; Flexas J; Alsina Mdel M; Bota J; Carambula C; de Herralde F; Galmés J; Lovisolo C; Jiménez M; Ribas-Carbó M; Rusjan D; Secchi F; Tomàs M; Zsófi Z; Medrano H Physiol Plant; 2008 Oct; 134(2):313-23. PubMed ID: 18507813 [TBL] [Abstract][Full Text] [Related]
18. Influence of leaf-to-air vapour pressure deficit (VPD) on the biochemistry and physiology of photosynthesis in Prosopis juliflora. Shirke PA; Pathre UV J Exp Bot; 2004 Sep; 55(405):2111-20. PubMed ID: 15310819 [TBL] [Abstract][Full Text] [Related]
19. Acclimation to short-term low temperatures in two Eucalyptus globulus clones with contrasting drought resistance. Costa E Silva F; Shvaleva A; Broetto F; Ortuño MF; Rodrigues ML; Almeida MH; Chaves MM; Pereira JS Tree Physiol; 2009 Jan; 29(1):77-86. PubMed ID: 19203934 [TBL] [Abstract][Full Text] [Related]
20. Internal coordination between hydraulics and stomatal control in leaves. Brodribb TJ; Jordan GJ Plant Cell Environ; 2008 Nov; 31(11):1557-64. PubMed ID: 18684244 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]