BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

194 related articles for article (PubMed ID: 17470150)

  • 1. Mechanism of CO2 acquisition in an acid-tolerant Chlamydomonas.
    Balkos KD; Colman B
    Plant Cell Environ; 2007 Jun; 30(6):745-52. PubMed ID: 17470150
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Inorganic carbon acquisition in some synurophyte algae.
    Bhatti S; Colman B
    Physiol Plant; 2008 May; 133(1):33-40. PubMed ID: 18298411
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Inorganic carbon acquisition in the acid-tolerant alga Chlorella kessleri.
    El-Ansari O; Colman B
    Physiol Plant; 2015 Jan; 153(1):175-82. PubMed ID: 24828745
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Uptake of CO(2) and bicarbonate by intact cells and chloroplasts of Tetraedron minimum and Chlamydomonas noctigama.
    van Hunnik E; Amoroso G; Sültemeyer D
    Planta; 2002 Sep; 215(5):763-9. PubMed ID: 12244441
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Carbon-concentrating mechanism in a green alga, Chlamydomonas reinhardtii, revealed by transcriptome analyses.
    Yamano T; Fukuzawa H
    J Basic Microbiol; 2009 Feb; 49(1):42-51. PubMed ID: 19253331
    [TBL] [Abstract][Full Text] [Related]  

  • 6. What physiological acclimation supports increased growth at high CO2 conditions?
    Spijkerman E
    Physiol Plant; 2008 May; 133(1):41-8. PubMed ID: 18298410
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Active transport of CO(2) and bicarbonate is induced in response to external CO(2) concentration in the green alga Chlorella kessleri.
    Bozzo GG; Colman B; Matsuda Y
    J Exp Bot; 2000 Aug; 51(349):1341-8. PubMed ID: 10944146
    [TBL] [Abstract][Full Text] [Related]  

  • 8. PHOTOSYNTHETIC INORGANIC CARBON ACQUISITION IN AN ACID-TOLERANT, FREE-LIVING SPECIES OF COCCOMYXA (CHLOROPHYTA)(1).
    Verma V; Bhatti S; Huss VA; Colman B
    J Phycol; 2009 Aug; 45(4):847-54. PubMed ID: 27034214
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Microalgal carbon-dioxide-concentrating mechanisms: Chlamydomonas inorganic carbon transporters.
    Spalding MH
    J Exp Bot; 2008; 59(7):1463-73. PubMed ID: 17597098
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Inorganic carbon acquisition in two green marine Stichococcus species.
    Moazami-Goudarzi M; Colman B
    Plant Cell Environ; 2011 Sep; 34(9):1465-72. PubMed ID: 21535017
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Diversity of inorganic carbon acquisition mechanisms by intact microbial mats of Microcoleus chthonoplastes (Cyanobacteriae, Oscillatoriaceae).
    Carrasco M; Mercado JM; Niell FX
    Physiol Plant; 2008 May; 133(1):49-58. PubMed ID: 18405333
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Induction of a high-CO2-inducible, periplasmic protein, H43, and its application as a high-CO2-responsive marker for study of the high-CO2-sensing mechanism in Chlamydomonas reinhardtii.
    Hanawa Y; Watanabe M; Karatsu Y; Fukuzawa H; Shiraiwa Y
    Plant Cell Physiol; 2007 Feb; 48(2):299-309. PubMed ID: 17202179
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Light and low-CO2-dependent LCIB-LCIC complex localization in the chloroplast supports the carbon-concentrating mechanism in Chlamydomonas reinhardtii.
    Yamano T; Tsujikawa T; Hatano K; Ozawa S; Takahashi Y; Fukuzawa H
    Plant Cell Physiol; 2010 Sep; 51(9):1453-68. PubMed ID: 20660228
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Acclimation of wild-type cells and CO2-insensitive mutants of the green alga Chlorella ellipsoidea to elevated [CO2].
    Ochiai T; Colman B; Matsuda Y
    Plant Cell Environ; 2007 Aug; 30(8):944-51. PubMed ID: 17617822
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The temperature response of C(3) and C(4) photosynthesis.
    Sage RF; Kubien DS
    Plant Cell Environ; 2007 Sep; 30(9):1086-106. PubMed ID: 17661749
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Inorganic carbon acquisition in potentially toxic and non-toxic diatoms: the effect of pH-induced changes in seawater carbonate chemistry.
    Trimborn S; Lundholm N; Thoms S; Richter KU; Krock B; Hansen PJ; Rost B
    Physiol Plant; 2008 May; 133(1):92-105. PubMed ID: 18405335
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Can the cold tolerance of C4 photosynthesis in Miscanthus x giganteus relative to Zea mays be explained by differences in activities and thermal properties of Rubisco?
    Wang D; Naidu SL; Portis AR; Moose SP; Long SP
    J Exp Bot; 2008; 59(7):1779-87. PubMed ID: 18503044
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Major diffusion leaks of clamp-on leaf cuvettes still unaccounted: how erroneous are the estimates of Farquhar et al. model parameters?
    Rodeghiero M; Niinemets U; Cescatti A
    Plant Cell Environ; 2007 Aug; 30(8):1006-22. PubMed ID: 17617828
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Acclimation to low [CO(2)] by an inorganic carbon-concentrating mechanism in Cyanophora paradoxa.
    Burey SC; Poroyko V; Ergen ZN; Fathi-Nejad S; Schüller C; Ohnishi N; Fukuzawa H; Bohnert HJ; Löffelhardt W
    Plant Cell Environ; 2007 Nov; 30(11):1422-35. PubMed ID: 17897412
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Carbon concentration mechanisms in photosynthetic microorganisms.
    Ghoshal D; Goyal A
    Indian J Biochem Biophys; 2000 Dec; 37(6):383-94. PubMed ID: 11355625
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.