These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
128 related articles for article (PubMed ID: 17470152)
1. Seasonal variations in nitrate reductase activity and internal N pools in intertidal brown algae are correlated with ambient nitrate concentrations. Young EB; Dring MJ; Savidge G; Birkett DA; Berges JA Plant Cell Environ; 2007 Jun; 30(6):764-74. PubMed ID: 17470152 [TBL] [Abstract][Full Text] [Related]
2. Physiological responses of intertidal marine brown algae to nitrogen deprivation and resupply of nitrate and ammonium. Young EB; Berges JA; Dring MJ Physiol Plant; 2009 Apr; 135(4):400-11. PubMed ID: 19220777 [TBL] [Abstract][Full Text] [Related]
3. Variability in iodine in temperate seaweeds and iodine accumulation kinetics of Fucus vesiculosus and Laminaria digitata (Phaeophyceae, Ochrophyta). Nitschke U; Walsh P; McDaid J; Stengel DB J Phycol; 2018 Feb; 54(1):114-125. PubMed ID: 29130494 [TBL] [Abstract][Full Text] [Related]
4. Nitrate uptake varies with tide height and nutrient availability in the intertidal seaweed Fucus vesiculosus. Benes KM; Bracken ME J Phycol; 2016 Oct; 52(5):863-876. PubMed ID: 27484932 [TBL] [Abstract][Full Text] [Related]
5. Chlorophyll a fluorescence responses of temperate Phaeophyceae under submersion and emersion regimes: a comparison of rapid and steady-state light curves. Nitschke U; Connan S; Stengel DB Photosynth Res; 2012 Oct; 114(1):29-42. PubMed ID: 22915336 [TBL] [Abstract][Full Text] [Related]
6. Variability in δ¹⁵N of intertidal brown algae along a salinity gradient: differential impact of nitrogen sources. Viana IG; Bode A Sci Total Environ; 2015 Apr; 512-513():167-176. PubMed ID: 25617782 [TBL] [Abstract][Full Text] [Related]
7. Black spruce assimilates nitrate in boreal winter. Koyama LA; Kielland K Tree Physiol; 2019 Apr; 39(4):536-543. PubMed ID: 30462316 [TBL] [Abstract][Full Text] [Related]
8. An expressed sequence tag analysis of the intertidal brown seaweeds Fucus serratus (L.) and F. vesiculosus (L.) (Heterokontophyta, Phaeophyceae) in response to abiotic stressors. Pearson GA; Hoarau G; Lago-Leston A; Coyer JA; Kube M; Reinhardt R; Henckel K; Serrão ET; Corre E; Olsen JL Mar Biotechnol (NY); 2010 Apr; 12(2):195-213. PubMed ID: 19609612 [TBL] [Abstract][Full Text] [Related]
9. Emersion induces nitrogen release and alteration of nitrogen metabolism in the intertidal genus Porphyra. Kim JK; Kraemer GP; Yarish C PLoS One; 2013; 8(7):e69961. PubMed ID: 23922872 [TBL] [Abstract][Full Text] [Related]
10. Photosynthetic activity in marine and brackish water strains of Fucus vesiculosus and Fucus radicans (Phaeophyceae) at different light qualities. Svahn C; Maria Gylle A; Ekelund NG Photochem Photobiol; 2012; 88(6):1455-60. PubMed ID: 22697409 [TBL] [Abstract][Full Text] [Related]
11. The response of nutrient assimilation and biochemical composition of Arctic seaweeds to a nutrient input in summer. Gordillo FJ; Aguilera J; Jiménez C J Exp Bot; 2006; 57(11):2661-71. PubMed ID: 16829547 [TBL] [Abstract][Full Text] [Related]
12. Zinc concentrations in marine macroalgae and a lichen from western Ireland in relation to phylogenetic grouping, habitat and morphology. Stengel DB; Macken A; Morrison L; Morley N Mar Pollut Bull; 2004 May; 48(9-10):902-9. PubMed ID: 15111037 [TBL] [Abstract][Full Text] [Related]
13. Co-occurrence of native and invasive macroalgae might be facilitated under global warming. Bommarito C; Noè S; Díaz-Morales DM; Lukić I; Hiebenthal C; Rilov G; Guy-Haim T; Wahl M Sci Total Environ; 2024 Feb; 912():169087. PubMed ID: 38056641 [TBL] [Abstract][Full Text] [Related]
14. Longitudinal profiles of carbon dioxide fixation capacities in marine macroalgae. Küppers U; Kremer BP Plant Physiol; 1978 Jul; 62(1):49-53. PubMed ID: 16660467 [TBL] [Abstract][Full Text] [Related]
15. [Induced activity of nitrate reductase by nitrate and cloning of nitrate reductase gene]. Wang LQ; Wang Y; Dong Y; Wang WB Sheng Wu Gong Cheng Xue Bao; 2003 Sep; 19(5):632-5. PubMed ID: 15969098 [TBL] [Abstract][Full Text] [Related]
16. [Content of alginic acid and fucoidan in fucus algae of the Barents sea]. Obluchinskaia ED; Voskoboĭnikov GM; Galynkin VA Prikl Biokhim Mikrobiol; 2002; 38(2):213-6. PubMed ID: 11962222 [TBL] [Abstract][Full Text] [Related]
17. Photosynthesis during desiccation in an intertidal alga and a land plant. Kawamitsu Y; Driscoll T; Boyer JS Plant Cell Physiol; 2000 Mar; 41(3):344-53. PubMed ID: 10805598 [TBL] [Abstract][Full Text] [Related]
18. Seasonal Variations in Surface Metabolite Composition of Fucus vesiculosus and Fucus serratus from the Baltic Sea. Rickert E; Wahl M; Link H; Richter H; Pohnert G PLoS One; 2016; 11(12):e0168196. PubMed ID: 27959901 [TBL] [Abstract][Full Text] [Related]
19. Seasonal fluctuations in chemical defenses against macrofouling in Fucus vesiculosus and Fucus serratus from the Baltic Sea. Rickert E; Karsten U; Pohnert G; Wahl M Biofouling; 2015; 31(4):363-77. PubMed ID: 26023861 [TBL] [Abstract][Full Text] [Related]
20. Seasonal differences in the effects of oscillatory and uni-directional flow on the growth and nitrate-uptake rates of juvenile Laminaria digitata (Phaeophyceae). Kregting LT; Hepburn CD; Savidge G J Phycol; 2015 Dec; 51(6):1116-26. PubMed ID: 26987006 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]