These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

151 related articles for article (PubMed ID: 17470238)

  • 1. Circular polarization biomicroscopy: a method for determining human corneal stromal lamellar organization in vivo.
    Misson GP
    Ophthalmic Physiol Opt; 2007 May; 27(3):256-64. PubMed ID: 17470238
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Collagen fibril orientation in the human corneal stroma and its implication in keratoconus.
    Daxer A; Fratzl P
    Invest Ophthalmol Vis Sci; 1997 Jan; 38(1):121-9. PubMed ID: 9008637
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Relationships between keratometry and collagen fibrillar structure of cornea by circular polarization biomicroscopy.
    Hwang H; Kim EC; Kim MS
    Cornea; 2011 Apr; 30(4):429-34. PubMed ID: 21045646
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Histologic evaluation of human posterior lamellar discs for femtosecond laser Descemet's stripping endothelial keratoplasty.
    Cheng YY; Kang SJ; Grossniklaus HE; Pels E; Duimel HJ; Frederik PM; Hendrikse F; Nuijts RM
    Cornea; 2009 Jan; 28(1):73-9. PubMed ID: 19092410
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The use of X-ray scattering techniques to quantify the orientation and distribution of collagen in the corneal stroma.
    Meek KM; Boote C
    Prog Retin Eye Res; 2009 Sep; 28(5):369-92. PubMed ID: 19577657
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Imaging of birefringent properties of keratoconus corneas by polarization-sensitive optical coherence tomography.
    Götzinger E; Pircher M; Dejaco-Ruhswurm I; Kaminski S; Skorpik C; Hitzenberger CK
    Invest Ophthalmol Vis Sci; 2007 Aug; 48(8):3551-8. PubMed ID: 17652723
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Spatial mapping of polarized light transmission in the central rabbit cornea.
    Christens-Barry WA; Green WJ; Connolly PJ; Farrell RA; McCally RL
    Exp Eye Res; 1996 Jun; 62(6):651-62. PubMed ID: 8983947
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Corneal collagen cross-linking: a confocal, electron, and light microscopy study of eye bank corneas.
    Dhaliwal JS; Kaufman SC
    Cornea; 2009 Jan; 28(1):62-7. PubMed ID: 19092408
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Fine structure of the interface between the anterior limiting lamina and the anterior stromal fibrils of the human cornea.
    Mathew JH; Bergmanson JP; Doughty MJ
    Invest Ophthalmol Vis Sci; 2008 Sep; 49(9):3914-8. PubMed ID: 18765633
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Laser-scanning in vivo confocal microscopy reveals two morphologically distinct populations of stromal nerves in normal human corneas.
    Visser N; McGhee CN; Patel DV
    Br J Ophthalmol; 2009 Apr; 93(4):506-9. PubMed ID: 19060013
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Microscopic characterization of collagen modifications induced by low-temperature diode-laser welding of corneal tissue.
    Matteini P; Rossi F; Menabuoni L; Pini R
    Lasers Surg Med; 2007 Aug; 39(7):597-604. PubMed ID: 17868101
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Ultrastructural analysis of collagen fibrils and proteoglycans in keratoconus.
    Akhtar S; Bron AJ; Salvi SM; Hawksworth NR; Tuft SJ; Meek KM
    Acta Ophthalmol; 2008 Nov; 86(7):764-72. PubMed ID: 18422999
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Corneal sensitivity and slit scanning in vivo confocal microscopy of the subbasal nerve plexus of the normal central and peripheral human cornea.
    Patel DV; Tavakoli M; Craig JP; Efron N; McGhee CN
    Cornea; 2009 Aug; 28(7):735-40. PubMed ID: 19574916
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Formation of stromal collagen fibrils and proteoglycans in the developing zebrafish cornea.
    Akhtar S; Schonthaler HB; Bron AJ; Dahm R
    Acta Ophthalmol; 2008 Sep; 86(6):655-65. PubMed ID: 18221494
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Linear birefringence of the central human cornea.
    Knighton RW; Huang XR
    Invest Ophthalmol Vis Sci; 2002 Jan; 43(1):82-6. PubMed ID: 11773016
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Interlamellar cohesive strength in the vertical meridian of human eye bank corneas.
    Smolek MK
    Invest Ophthalmol Vis Sci; 1993 Sep; 34(10):2962-9. PubMed ID: 8360028
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Harmonic microscopy of isotropic and anisotropic microstructure of the human cornea.
    Olivier N; Aptel F; Plamann K; Schanne-Klein MC; Beaurepaire E
    Opt Express; 2010 Mar; 18(5):5028-40. PubMed ID: 20389515
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Corneal lamellar dissection by using suture threads in porcine eyes.
    Rocha GA; Durán JA; Acera A; Merayo J
    Cornea; 2007 Dec; 26(10):1255-7. PubMed ID: 18043185
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Detection of subepithelial fibrosis associated with corneal stromal edema by second harmonic generation imaging microscopy.
    Morishige N; Yamada N; Teranishi S; Chikama T; Nishida T; Takahara A
    Invest Ophthalmol Vis Sci; 2009 Jul; 50(7):3145-50. PubMed ID: 19234355
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Ultrastructural features of posterior crocodile shagreen of the cornea.
    Belliveau MJ; Brownstein S; Agapitos P; Font RL
    Surv Ophthalmol; 2009; 54(5):569-75. PubMed ID: 19682623
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.