These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

125 related articles for article (PubMed ID: 17470288)

  • 1. Application of a hybrid wavelet feature selection method in the design of a self-paced brain interface system.
    Fatourechi M; Birch GE; Ward RK
    J Neuroeng Rehabil; 2007 Apr; 4():11. PubMed ID: 17470288
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A self-paced brain-computer interface system with a low false positive rate.
    Fatourechi M; Ward RK; Birch GE
    J Neural Eng; 2008 Mar; 5(1):9-23. PubMed ID: 18310807
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A self-paced brain interface system that uses movement related potentials and changes in the power of brain rhythms.
    Fatourechi M; Birch GE; Ward RK
    J Comput Neurosci; 2007 Aug; 23(1):21-37. PubMed ID: 17216365
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Automatic user customization for improving the performance of a self-paced brain interface system.
    Fatourechi M; Bashashati A; Birch GE; Ward RK
    Med Biol Eng Comput; 2006 Dec; 44(12):1093-104. PubMed ID: 17111117
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Recent studies in the design of a self-paced brain interface with low false positive rate.
    Fatourechi M; Ward RK; Birch GE
    Conf Proc IEEE Eng Med Biol Soc; 2006; 2006():2944-9. PubMed ID: 17946537
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Learning from feedback training data at a self-paced brain-computer interface.
    Zhang H; Liyanage SR; Wang C; Guan C
    J Neural Eng; 2011 Aug; 8(4):046035. PubMed ID: 21772075
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A hybrid NIRS-EEG system for self-paced brain computer interface with online motor imagery.
    Koo B; Lee HG; Nam Y; Kang H; Koh CS; Shin HC; Choi S
    J Neurosci Methods; 2015 Apr; 244():26-32. PubMed ID: 24797225
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Classification of single trial motor imagery EEG recordings with subject adapted non-dyadic arbitrary time-frequency tilings.
    Ince NF; Arica S; Tewfik A
    J Neural Eng; 2006 Sep; 3(3):235-44. PubMed ID: 16921207
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Feature extraction for EEG-based brain-computer interfaces by wavelet packet best basis decomposition.
    Yang BH; Yan GZ; Yan RG; Wu T
    J Neural Eng; 2006 Dec; 3(4):251-6. PubMed ID: 17124328
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Channel selection and classification of electroencephalogram signals: an artificial neural network and genetic algorithm-based approach.
    Yang J; Singh H; Hines EL; Schlaghecken F; Iliescu DD; Leeson MS; Stocks NG
    Artif Intell Med; 2012 Jun; 55(2):117-26. PubMed ID: 22503644
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Brain-computer interface design for asynchronous control applications: improvements to the LF-ASD asynchronous brain switch.
    Borisoff JF; Mason SG; Bashashati A; Birch GE
    IEEE Trans Biomed Eng; 2004 Jun; 51(6):985-92. PubMed ID: 15188869
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A real-time classification algorithm for EEG-based BCI driven by self-induced emotions.
    Iacoviello D; Petracca A; Spezialetti M; Placidi G
    Comput Methods Programs Biomed; 2015 Dec; 122(3):293-303. PubMed ID: 26358282
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Wavelet-based fractal features with active segment selection: application to single-trial EEG data.
    Hsu WY; Lin CC; Ju MS; Sun YN
    J Neurosci Methods; 2007 Jun; 163(1):145-60. PubMed ID: 17379316
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Enhanced active segment selection for single-trial EEG classification.
    Hsu WY
    Clin EEG Neurosci; 2012 Apr; 43(2):87-96. PubMed ID: 22715494
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Channel selection for optimizing feature extraction in an electrocorticogram-based brain-computer interface.
    Wei Q; Lu Z; Chen K; Ma Y
    J Clin Neurophysiol; 2010 Oct; 27(5):321-7. PubMed ID: 20844441
    [TBL] [Abstract][Full Text] [Related]  

  • 16. EEG-based motor imagery analysis using weighted wavelet transform features.
    Hsu WY; Sun YN
    J Neurosci Methods; 2009 Jan; 176(2):310-8. PubMed ID: 18848844
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Neural network classification of autoregressive features from electroencephalogram signals for brain-computer interface design.
    Huan NJ; Palaniappan R
    J Neural Eng; 2004 Sep; 1(3):142-50. PubMed ID: 15876633
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A comparative study on generating training-data for self-paced brain interfaces.
    Bashashati A; Mason SG; Borisoff JF; Ward RK; Birch GE
    IEEE Trans Neural Syst Rehabil Eng; 2007 Mar; 15(1):59-66. PubMed ID: 17436877
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Auditory and spatial navigation imagery in Brain-Computer Interface using optimized wavelets.
    Cabrera AF; Dremstrup K
    J Neurosci Methods; 2008 Sep; 174(1):135-46. PubMed ID: 18656500
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Efficient automatic selection and combination of EEG features in least squares classifiers for motor imagery brain-computer interfaces.
    Rodríguez-Bermúdez G; García-Laencina PJ; Roca-Dorda J
    Int J Neural Syst; 2013 Aug; 23(4):1350015. PubMed ID: 23746288
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.