BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

248 related articles for article (PubMed ID: 17470545)

  • 21. Proteomic studies of Bacillus anthracis.
    Chitlaru T; Shafferman A
    Future Microbiol; 2009 Oct; 4(8):983-98. PubMed ID: 19824790
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Lipoprotein biosynthesis by prolipoprotein diacylglyceryl transferase is required for efficient spore germination and full virulence of Bacillus anthracis.
    Okugawa S; Moayeri M; Pomerantsev AP; Sastalla I; Crown D; Gupta PK; Leppla SH
    Mol Microbiol; 2012 Jan; 83(1):96-109. PubMed ID: 22103323
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Bacillus anthracis: interactions with the host and establishment of inhalational anthrax.
    Passalacqua KD; Bergman NH
    Future Microbiol; 2006 Dec; 1(4):397-415. PubMed ID: 17661631
    [TBL] [Abstract][Full Text] [Related]  

  • 24. The germination-specific lytic enzymes SleB, CwlJ1, and CwlJ2 each contribute to Bacillus anthracis spore germination and virulence.
    Giebel JD; Carr KA; Anderson EC; Hanna PC
    J Bacteriol; 2009 Sep; 191(18):5569-76. PubMed ID: 19581364
    [TBL] [Abstract][Full Text] [Related]  

  • 25. A Stochastic Intracellular Model of Anthrax Infection With Spore Germination Heterogeneity.
    Williams B; López-García M; Gillard JJ; Laws TR; Lythe G; Carruthers J; Finnie T; Molina-París C
    Front Immunol; 2021; 12():688257. PubMed ID: 34497601
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Effects of endogenous D-alanine synthesis and autoinhibition of Bacillus anthracis germination on in vitro and in vivo infections.
    McKevitt MT; Bryant KM; Shakir SM; Larabee JL; Blanke SR; Lovchik J; Lyons CR; Ballard JD
    Infect Immun; 2007 Dec; 75(12):5726-34. PubMed ID: 17923523
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Anthrax SET protein: a potential virulence determinant that epigenetically represses NF-κB activation in infected macrophages.
    Mujtaba S; Winer BY; Jaganathan A; Patel J; Sgobba M; Schuch R; Gupta YK; Haider S; Wang R; Fischetti VA
    J Biol Chem; 2013 Aug; 288(32):23458-72. PubMed ID: 23720780
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Early Bacillus anthracis-macrophage interactions: intracellular survival survival and escape.
    Dixon TC; Fadl AA; Koehler TM; Swanson JA; Hanna PC
    Cell Microbiol; 2000 Dec; 2(6):453-63. PubMed ID: 11207600
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Bacillus anthracis genetics and virulence gene regulation.
    Koehler TM
    Curr Top Microbiol Immunol; 2002; 271():143-64. PubMed ID: 12224521
    [TBL] [Abstract][Full Text] [Related]  

  • 30. BrnQ-Type Branched-Chain Amino Acid Transporters Influence Bacillus anthracis Growth and Virulence.
    Dutta S; Corsi ID; Bier N; Koehler TM
    mBio; 2022 Feb; 13(1):e0364021. PubMed ID: 35073743
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Characterization of a Bacillus anthracis spore coat-surface protein that influences coat-surface morphology.
    Mallozzi M; Bozue J; Giorno R; Moody KS; Slack A; Cote C; Qiu D; Wang R; McKenney P; Lai EM; Maddock JR; Friedlander A; Welkos S; Eichenberger P; Driks A
    FEMS Microbiol Lett; 2008 Dec; 289(1):110-7. PubMed ID: 19054101
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Spore-Associated Proteins Involved in c-di-GMP Synthesis and Degradation of Bacillus anthracis.
    Hermanas TM; Subramanian S; Dann CE; Stewart GC
    J Bacteriol; 2021 Aug; 203(17):e0013521. PubMed ID: 34096779
    [TBL] [Abstract][Full Text] [Related]  

  • 33. The BclB glycoprotein of Bacillus anthracis is involved in exosporium integrity.
    Thompson BM; Waller LN; Fox KF; Fox A; Stewart GC
    J Bacteriol; 2007 Sep; 189(18):6704-13. PubMed ID: 17644587
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Inactivation of Bacillus anthracis spores in murine primary macrophages.
    Hu H; Sa Q; Koehler TM; Aronson AI; Zhou D
    Cell Microbiol; 2006 Oct; 8(10):1634-42. PubMed ID: 16984418
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Genetic analysis of petrobactin transport in Bacillus anthracis.
    Carlson PE; Dixon SD; Janes BK; Carr KA; Nusca TD; Anderson EC; Keene SE; Sherman DH; Hanna PC
    Mol Microbiol; 2010 Feb; 75(4):900-9. PubMed ID: 20487286
    [TBL] [Abstract][Full Text] [Related]  

  • 36. [Anthrax: early steps of the intracellular stage of infection development].
    Bakhteeva IV; Titareva GM; Kravchenko TB; Mironova RI; Noskov AN
    Mol Gen Mikrobiol Virusol; 2005; (4):3-9. PubMed ID: 16334217
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Disruption of SpoIIID decreases sporulation, increases extracellular proteolytic activity and virulence in Bacillus anthracis.
    Lyu Y; Gu M; Chen M; Feng E; Zhu L; Pan C; Wang D; Liu X; Wang H
    Biochem Biophys Res Commun; 2019 Jun; 513(3):651-656. PubMed ID: 30982579
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Differential analysis of Bacillus anthracis after pX01 plasmid curing and comprehensive data on Bacillus anthracis infection in macrophages and glial cells.
    Park SH; Oh HB; Seong WK; Kim CW; Cho SY; Yoo CK
    Proteomics; 2007 Oct; 7(20):3743-58. PubMed ID: 17880004
    [TBL] [Abstract][Full Text] [Related]  

  • 39. The dltABCD operon of Bacillus anthracis sterne is required for virulence and resistance to peptide, enzymatic, and cellular mediators of innate immunity.
    Fisher N; Shetron-Rama L; Herring-Palmer A; Heffernan B; Bergman N; Hanna P
    J Bacteriol; 2006 Feb; 188(4):1301-9. PubMed ID: 16452412
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Molecular study of genes involved in virulence regulatory pathways in Bacillus anthracis vaccine strain "Carbosap".
    La Rosa G; Muscillo M; Sali M; De Carolis E; Marianelli C; Ciuchini F; Fasanella A; Adone R
    New Microbiol; 2006 Oct; 29(4):307-10. PubMed ID: 17201098
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 13.