BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

174 related articles for article (PubMed ID: 17471460)

  • 1. Dead-end elimination for multistate protein design.
    Yanover C; Fromer M; Shifman JM
    J Comput Chem; 2007 Oct; 28(13):2122-9. PubMed ID: 17471460
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Improved Pruning algorithms and Divide-and-Conquer strategies for Dead-End Elimination, with application to protein design.
    Georgiev I; Lilien RH; Donald BR
    Bioinformatics; 2006 Jul; 22(14):e174-83. PubMed ID: 16873469
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Preprocessing of rotamers for protein design calculations.
    Shah PS; Hom GK; Mayo SL
    J Comput Chem; 2004 Nov; 25(14):1797-800. PubMed ID: 15362137
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Trading accuracy for speed: A quantitative comparison of search algorithms in protein sequence design.
    Voigt CA; Gordon DB; Mayo SL
    J Mol Biol; 2000 Jun; 299(3):789-803. PubMed ID: 10835284
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Dead-end elimination with backbone flexibility.
    Georgiev I; Donald BR
    Bioinformatics; 2007 Jul; 23(13):i185-94. PubMed ID: 17646295
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Protein design for diversity of sequences and conformations using dead-end elimination.
    Hanf KJ
    Methods Mol Biol; 2012; 899():127-44. PubMed ID: 22735950
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Accurate prediction for atomic-level protein design and its application in diversifying the near-optimal sequence space.
    Fromer M; Yanover C
    Proteins; 2009 May; 75(3):682-705. PubMed ID: 19003998
    [TBL] [Abstract][Full Text] [Related]  

  • 8. An efficient algorithm for multistate protein design based on FASTER.
    Allen BD; Mayo SL
    J Comput Chem; 2010 Apr; 31(5):904-16. PubMed ID: 19637210
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Computational protein design with side-chain conformational entropy.
    Sciretti D; Bruscolini P; Pelizzola A; Pretti M; Jaramillo A
    Proteins; 2009 Jan; 74(1):176-91. PubMed ID: 18618711
    [TBL] [Abstract][Full Text] [Related]  

  • 10. An extended dead-end elimination algorithm to determine gap-free lists of low energy states.
    Kloppmann E; Ullmann GM; Becker T
    J Comput Chem; 2007 Nov; 28(14):2325-35. PubMed ID: 17471458
    [TBL] [Abstract][Full Text] [Related]  

  • 11. MUMBO: a protein-design approach to crystallographic model building and refinement.
    Stiebritz MT; Muller YA
    Acta Crystallogr D Biol Crystallogr; 2006 Jun; 62(Pt 6):648-58. PubMed ID: 16699192
    [TBL] [Abstract][Full Text] [Related]  

  • 12. PLUG (Pruning of Local Unrealistic Geometries) removes restrictions on biophysical modeling for protein design.
    Hallen MA
    Proteins; 2019 Jan; 87(1):62-73. PubMed ID: 30378699
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Fast and accurate side-chain topology and energy refinement (FASTER) as a new method for protein structure optimization.
    Desmet J; Spriet J; Lasters I
    Proteins; 2002 Jul; 48(1):31-43. PubMed ID: 12012335
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Dramatic performance enhancements for the FASTER optimization algorithm.
    Allen BD; Mayo SL
    J Comput Chem; 2006 Jul; 27(10):1071-5. PubMed ID: 16685715
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Restricted dead-end elimination: protein redesign with a bounded number of residue mutations.
    Safi M; Lilien RH
    J Comput Chem; 2010 Apr; 31(6):1207-15. PubMed ID: 19885869
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Theoretical and algorithmical optimization of the dead-end elimination theorem.
    Desmet J; De Maeyer M; Lasters I
    Pac Symp Biocomput; 1997; ():122-33. PubMed ID: 9390285
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Pareto optimization in computational protein design with multiple objectives.
    Suárez M; Tortosa P; Carrera J; Jaramillo A
    J Comput Chem; 2008 Dec; 29(16):2704-11. PubMed ID: 18496793
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Computational design of a single amino acid sequence that can switch between two distinct protein folds.
    Ambroggio XI; Kuhlman B
    J Am Chem Soc; 2006 Feb; 128(4):1154-61. PubMed ID: 16433531
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Prediction of protein-protein interface sequence diversity using flexible backbone computational protein design.
    Humphris EL; Kortemme T
    Structure; 2008 Dec; 16(12):1777-88. PubMed ID: 19081054
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The dead-end elimination theorem: mathematical aspects, implementation, optimizations, evaluation, and performance.
    De Maeyer M; Desmet J; Lasters I
    Methods Mol Biol; 2000; 143():265-304. PubMed ID: 11084910
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 9.