These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

89 related articles for article (PubMed ID: 17471763)

  • 21. Explaining the Railsback stretch in terms of the inharmonicity of piano tones and sensory dissonance.
    Giordano N
    J Acoust Soc Am; 2015 Oct; 138(4):2359-66. PubMed ID: 26520317
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Musical training software for children with cochlear implants.
    Di Nardo W; Schinaia L; Anzivino R; De Corso E; Ciacciarelli A; Paludetti G
    Acta Otorhinolaryngol Ital; 2015 Oct; 35(4):249-57. PubMed ID: 26824211
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Nonnegative matrix factorization with the Itakura-Saito divergence: with application to music analysis.
    Févotte C; Bertin N; Durrieu JL
    Neural Comput; 2009 Mar; 21(3):793-830. PubMed ID: 18785855
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Melodic contour identification by cochlear implant listeners.
    Galvin JJ; Fu QJ; Nogaki G
    Ear Hear; 2007 Jun; 28(3):302-19. PubMed ID: 17485980
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Learning novel musical pitch via distributional learning.
    Ong JH; Burnham D; Stevens CJ
    J Exp Psychol Learn Mem Cogn; 2017 Jan; 43(1):150-157. PubMed ID: 27149394
    [TBL] [Abstract][Full Text] [Related]  

  • 26. The family oriented musical training for children with cochlear implants: speech and musical perception results of two year follow-up.
    Yucel E; Sennaroglu G; Belgin E
    Int J Pediatr Otorhinolaryngol; 2009 Jul; 73(7):1043-52. PubMed ID: 19411117
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Computational-Model-Based Analysis of Context Effects on Harmonic Expectancy.
    Morimoto S; Remijn GB; Nakajima Y
    PLoS One; 2016; 11(3):e0151374. PubMed ID: 27003807
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Perception of musical tension in short chord sequences: the influence of harmonic function, sensory dissonance, horizontal motion, and musical training.
    Bigand E; Parncutt R; Lerdahl F
    Percept Psychophys; 1996 Jan; 58(1):124-41. PubMed ID: 8668513
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Music training improves pitch perception in prelingually deafened children with cochlear implants.
    Chen JK; Chuang AY; McMahon C; Hsieh JC; Tung TH; Li LP
    Pediatrics; 2010 Apr; 125(4):e793-800. PubMed ID: 20211951
    [TBL] [Abstract][Full Text] [Related]  

  • 30. The music of speech: music training facilitates pitch processing in both music and language.
    Schön D; Magne C; Besson M
    Psychophysiology; 2004 May; 41(3):341-9. PubMed ID: 15102118
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Musical pitch of two-tone complexes and predictions by modern pitch theories.
    Houtsma AJ
    J Acoust Soc Am; 1979 Jul; 66(1):87-99. PubMed ID: 489835
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Spatial associations for musical stimuli: a piano in the head?
    Lidji P; Kolinsky R; Lochy A; Morais J
    J Exp Psychol Hum Percept Perform; 2007 Oct; 33(5):1189-207. PubMed ID: 17924817
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Are lexical tones musical? Native language's influence on neural response to pitch in different domains.
    Chen A; Peter V; Wijnen F; Schnack H; Burnham D
    Brain Lang; 2018; 180-182():31-41. PubMed ID: 29689493
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Perception of polyphony with cochlear implants for 2 and 3 simultaneous pitches.
    Penninger RT; Kludt E; Limb CJ; Leman M; Dhooge I; Buechner A
    Otol Neurotol; 2014 Mar; 35(3):431-6. PubMed ID: 24518404
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Piano training enhances the neural processing of pitch and improves speech perception in Mandarin-speaking children.
    Nan Y; Liu L; Geiser E; Shu H; Gong CC; Dong Q; Gabrieli JDE; Desimone R
    Proc Natl Acad Sci U S A; 2018 Jul; 115(28):E6630-E6639. PubMed ID: 29941577
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Structural, functional, and perceptual differences in Heschl's gyrus and musical instrument preference.
    Schneider P; Sluming V; Roberts N; Bleeck S; Rupp A
    Ann N Y Acad Sci; 2005 Dec; 1060():387-94. PubMed ID: 16597790
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Musical training shapes neural responses to melodic and prosodic expectation.
    Zioga I; Di Bernardi Luft C; Bhattacharya J
    Brain Res; 2016 Nov; 1650():267-282. PubMed ID: 27622645
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Processing of musical syntax tonic versus subdominant: an event-related potential study.
    Poulin-Charronnat B; Bigand E; Koelsch S
    J Cogn Neurosci; 2006 Sep; 18(9):1545-54. PubMed ID: 16989554
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Influence of musical expertise and musical training on pitch processing in music and language.
    Besson M; Schön D; Moreno S; Santos A; Magne C
    Restor Neurol Neurosci; 2007; 25(3-4):399-410. PubMed ID: 17943015
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Pitch-matching accuracy in trained singers and untrained individuals: the impact of musical interference and noise.
    Estis JM; Dean-Claytor A; Moore RE; Rowell TL
    J Voice; 2011 Mar; 25(2):173-80. PubMed ID: 20456914
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 5.