These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

126 related articles for article (PubMed ID: 17472332)

  • 21. Super crystal structures of octahedral c-In2O3 nanocrystals.
    Lu W; Liu Q; Sun Z; He J; Ezeolu C; Fang J
    J Am Chem Soc; 2008 Jun; 130(22):6983-91. PubMed ID: 18461942
    [TBL] [Abstract][Full Text] [Related]  

  • 22. How nanocrystallinity and order define the magnetic properties of ε-Co supracrystals.
    Yang J; Khazen K; Pileni MP
    J Phys Condens Matter; 2014 Jul; 26(29):295303. PubMed ID: 24961406
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Bistable magnetoresistance switching in exchange-coupled CoFe₂O₄--Fe₃O₄ binary nanocrystal superlattices by self-assembly and thermal annealing.
    Chen J; Ye X; Oh SJ; Kikkawa JM; Kagan CR; Murray CB
    ACS Nano; 2013 Feb; 7(2):1478-86. PubMed ID: 23273052
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Assessing the relevance of building block crystallinity for tuning the stiffness of gold nanocrystal superlattices.
    Yan C; Portalès H; Goubet N; Arfaoui I; Sirotkin S; Mermet A; Pileni MP
    Nanoscale; 2013 Oct; 5(20):9523-7. PubMed ID: 24056754
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Influence of Cracks on the Optical Properties of Silver Nanocrystals Supracrystal Films.
    Wei J; Deeb C; Pelouard JL; Pileni MP
    ACS Nano; 2019 Jan; 13(1):573-581. PubMed ID: 30557505
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Shape-dependent ordering of gold nanocrystals into large-scale superlattices.
    Gong J; Newman RS; Engel M; Zhao M; Bian F; Glotzer SC; Tang Z
    Nat Commun; 2017 Jan; 8():14038. PubMed ID: 28102198
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Hierarchy in Au nanocrystal ordering in supracrystals: III. Competition between van der Waals and dynamic processes.
    Schaeffer N; Wan Y; Pileni MP
    Langmuir; 2014 Jun; 30(24):7177-81. PubMed ID: 24853914
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Systematic electron crystallographic studies of self-assembled binary nanocrystal superlattices.
    Chen J; Ye X; Murray CB
    ACS Nano; 2010 Apr; 4(4):2374-81. PubMed ID: 20302347
    [TBL] [Abstract][Full Text] [Related]  

  • 29. 3D quantitative analysis of platinum nanocrystal superlattices by electron tomography.
    Florea I; Demortière A; Petit C; Bulou H; Hirlimann C; Ersen O
    ACS Nano; 2012 Mar; 6(3):2574-81. PubMed ID: 22335360
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Modulating physical properties of isolated and self-assembled nanocrystals through change in nanocrystallinity.
    Goubet N; Yan C; Polli D; Portalès H; Arfaoui I; Cerullo G; Pileni MP
    Nano Lett; 2013 Feb; 13(2):504-8. PubMed ID: 23272764
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Supracrystalline Colloidal Eggs: Epitaxial Growth and Freestanding Three-Dimensional Supracrystals in Nanoscaled Colloidosomes.
    Yang Z; Altantzis T; Zanaga D; Bals S; Van Tendeloo G; Pileni MP
    J Am Chem Soc; 2016 Mar; 138(10):3493-500. PubMed ID: 26908091
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Coating agent-induced mechanical behavior of 3D self-assembled nanocrystals.
    Çolak A; Wei J; Arfaoui I; Pileni MP
    Phys Chem Chem Phys; 2017 Sep; 19(35):23887-23897. PubMed ID: 28829072
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Controllable synthesis of Cu2S nanocrystals and their assembly into a superlattice.
    Zhuang Z; Peng Q; Zhang B; Li Y
    J Am Chem Soc; 2008 Aug; 130(32):10482-3. PubMed ID: 18636712
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Colloidal nanocrystals with molecular metal chalcogenide surface ligands.
    Kovalenko MV; Scheele M; Talapin DV
    Science; 2009 Jun; 324(5933):1417-20. PubMed ID: 19520953
    [TBL] [Abstract][Full Text] [Related]  

  • 35. One-dimensional self-assembly of planar pi-conjugated molecules: adaptable building blocks for organic nanodevices.
    Zang L; Che Y; Moore JS
    Acc Chem Res; 2008 Dec; 41(12):1596-608. PubMed ID: 18616298
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Semiconductor rings fabricated by self-assembly of nanocrystals.
    Liu B; Zeng HC
    J Am Chem Soc; 2005 Dec; 127(51):18262-8. PubMed ID: 16366580
    [TBL] [Abstract][Full Text] [Related]  

  • 37. LEGO Materials.
    Talapin DV
    ACS Nano; 2008 Jun; 2(6):1097-100. PubMed ID: 19206324
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Colloidal chemical synthesis and formation kinetics of uniformly sized nanocrystals of metals, oxides, and chalcogenides.
    Kwon SG; Hyeon T
    Acc Chem Res; 2008 Dec; 41(12):1696-709. PubMed ID: 18681462
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Self-assembly of ZnO nanocrystals in colloidal solutions.
    Pagès C; Coppel Y; Kahn ML; Maisonnat A; Chaudret B
    Chemphyschem; 2009 Sep; 10(13):2334-44. PubMed ID: 19630054
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Inorganic cluster syntheses of TM2+-doped quantum dots (CdSe, CdS, CdSe/CdS): physical property dependence on dopant locale.
    Archer PI; Santangelo SA; Gamelin DR
    J Am Chem Soc; 2007 Aug; 129(31):9808-18. PubMed ID: 17629274
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.