These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
381 related articles for article (PubMed ID: 17472336)
1. Plastic deformation of amorphous poly(L/DL-lactide): structure evolution and physical properties. Pluta M; Galeski A Biomacromolecules; 2007 Jun; 8(6):1836-43. PubMed ID: 17472336 [TBL] [Abstract][Full Text] [Related]
2. Study on the shape memory effects of poly(L-lactide-co-epsilon-caprolactone) biodegradable polymers. Lu XL; Sun ZJ; Cai W; Gao ZY J Mater Sci Mater Med; 2008 Jan; 19(1):395-9. PubMed ID: 17607526 [TBL] [Abstract][Full Text] [Related]
3. Crystal growth and solid-state structure of poly(lactide) Stereocopolymers. Abe H; Harigaya M; Kikkawa Y; Tsuge T; Doi Y Biomacromolecules; 2005; 6(1):457-67. PubMed ID: 15638553 [TBL] [Abstract][Full Text] [Related]
5. Influence of low-temperature nucleation on the crystallization process of poly(L-lactide). Hernández Sánchez F; Molina Mateo J; Romero Colomer FJ; Salmerón Sánchez M; Gómez Ribelles JL; Mano JF Biomacromolecules; 2005; 6(6):3283-90. PubMed ID: 16283757 [TBL] [Abstract][Full Text] [Related]
6. The effect of crystallinity on the deformation mechanism and bulk mechanical properties of PLLA. Renouf-Glauser AC; Rose J; Farrar DF; Cameron RE Biomaterials; 2005 Oct; 26(29):5771-82. PubMed ID: 15949544 [TBL] [Abstract][Full Text] [Related]
7. Synthesis, structure and properties of poly(L-lactide-co-ε-caprolactone) statistical copolymers. Fernández J; Etxeberria A; Sarasua JR J Mech Behav Biomed Mater; 2012 May; 9():100-12. PubMed ID: 22498288 [TBL] [Abstract][Full Text] [Related]
8. Study of the chain microstructure effects on the resulting thermal properties of poly(L-lactide)/poly(N-isopropylacrylamide) biomedical materials. Lizundia E; Meaurio E; Laza JM; Vilas JL; León Isidro LM Mater Sci Eng C Mater Biol Appl; 2015 May; 50():97-106. PubMed ID: 25746250 [TBL] [Abstract][Full Text] [Related]
9. Effects of chain microstructures on mechanical behavior and aging of a poly(L-lactide-co-ε-caprolactone) biomedical thermoplastic-elastomer. Fernández J; Etxeberria A; Ugartemendia JM; Petisco S; Sarasua JR J Mech Behav Biomed Mater; 2012 Aug; 12():29-38. PubMed ID: 22659093 [TBL] [Abstract][Full Text] [Related]
10. Mechanical and thermal property characterization of poly-l-lactide (PLLA) scaffold developed using pressure-controllable green foaming technology. Sheng SJ; Hu X; Wang F; Ma QY; Gu MF Mater Sci Eng C Mater Biol Appl; 2015 Apr; 49():612-622. PubMed ID: 25686990 [TBL] [Abstract][Full Text] [Related]
11. Micellization phenomena of amphiphilic block copolymers based on methoxy poly(ethylene glycol) and either crystalline or amorphous poly(caprolactone-b-lactide). Zhang J; Wang LQ; Wang H; Tu K Biomacromolecules; 2006 Sep; 7(9):2492-500. PubMed ID: 16961309 [TBL] [Abstract][Full Text] [Related]
12. Sterility, mechanical properties, and molecular stability of polylactide internal-fixation devices treated with low-temperature plasmas. Gogolewski S; Mainil-Varlet P; Dillon JG J Biomed Mater Res; 1996 Oct; 32(2):227-35. PubMed ID: 8884500 [TBL] [Abstract][Full Text] [Related]
14. Metastability and transformation of polymorphic crystals in biodegradable poly(butylene adipate). Gan Z; Kuwabara K; Abe H; Iwata T; Doi Y Biomacromolecules; 2004; 5(2):371-8. PubMed ID: 15002996 [TBL] [Abstract][Full Text] [Related]
15. Structure and morphology changes during in vitro degradation of electrospun poly(glycolide-co-lactide) nanofiber membrane. Zong X; Ran S; Kim KS; Fang D; Hsiao BS; Chu B Biomacromolecules; 2003; 4(2):416-23. PubMed ID: 12625740 [TBL] [Abstract][Full Text] [Related]
16. Enhancement of the mechanical properties of polylactides by solid-state extrusion. II. Poly(L-lactide), poly(L/D-lactide), and poly(L/DL-lactide. Ferguson S; Wahl D; Gogolewski S J Biomed Mater Res; 1996 Apr; 30(4):543-51. PubMed ID: 8847363 [TBL] [Abstract][Full Text] [Related]
17. Effect of polymer composition on rheological and degradation properties of temperature-responsive gelling systems composed of acyl-capped PCLA-PEG-PCLA. Petit A; Müller B; Meijboom R; Bruin P; van de Manakker F; Versluijs-Helder M; de Leede LG; Doornbos A; Landin M; Hennink WE; Vermonden T Biomacromolecules; 2013 Sep; 14(9):3172-82. PubMed ID: 23875877 [TBL] [Abstract][Full Text] [Related]
18. Processing and characterization of absorbable polylactide polymers for use in surgical implants. Andriano KP; Pohjonen T; Törmälä P J Appl Biomater; 1994; 5(2):133-40. PubMed ID: 10172072 [TBL] [Abstract][Full Text] [Related]
19. A new generation of poly(lactide/ε-caprolactone) polymeric biomaterials for application in the medical field. Fernández J; Larrañaga A; Etxeberria A; Wang W; Sarasua JR J Biomed Mater Res A; 2014 Oct; 102(10):3573-84. PubMed ID: 24243562 [TBL] [Abstract][Full Text] [Related]
20. Crystallization Temperature Dependence of Cavitation and Plastic Flow in the Tensile Deformation of Poly(ε-caprolactone). Jiang Z; Chen R; Lu Y; Whiteside B; Coates P; Wu Z; Men Y J Phys Chem B; 2017 Jul; 121(27):6673-6684. PubMed ID: 28614660 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]