These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
138 related articles for article (PubMed ID: 17472376)
1. Evidence from Raman spectroscopy that InhA, the mycobacterial enoyl reductase, modulates the conformation of the NADH cofactor to promote catalysis. Bell AF; Stratton CF; Zhang X; Novichenok P; Jaye AA; Nair PA; Parikh S; Rawat R; Tonge PJ J Am Chem Soc; 2007 May; 129(20):6425-31. PubMed ID: 17472376 [TBL] [Abstract][Full Text] [Related]
2. Crystallographic and pre-steady-state kinetics studies on binding of NADH to wild-type and isoniazid-resistant enoyl-ACP(CoA) reductase enzymes from Mycobacterium tuberculosis. Oliveira JS; Pereira JH; Canduri F; Rodrigues NC; de Souza ON; de Azevedo WF; Basso LA; Santos DS J Mol Biol; 2006 Jun; 359(3):646-66. PubMed ID: 16647717 [TBL] [Abstract][Full Text] [Related]
3. Binding of the tautomeric forms of isoniazid-NAD adducts to the active site of the Mycobacterium tuberculosis enoyl-ACP reductase (InhA): a theoretical approach. Stigliani JL; Arnaud P; Delaine T; Bernardes-Génisson V; Meunier B; Bernadou J J Mol Graph Model; 2008 Nov; 27(4):536-45. PubMed ID: 18955002 [TBL] [Abstract][Full Text] [Related]
4. Crystallographic studies on the binding of isonicotinyl-NAD adduct to wild-type and isoniazid resistant 2-trans-enoyl-ACP (CoA) reductase from Mycobacterium tuberculosis. Dias MV; Vasconcelos IB; Prado AM; Fadel V; Basso LA; de Azevedo WF; Santos DS J Struct Biol; 2007 Sep; 159(3):369-80. PubMed ID: 17588773 [TBL] [Abstract][Full Text] [Related]
5. Roles of tyrosine 158 and lysine 165 in the catalytic mechanism of InhA, the enoyl-ACP reductase from Mycobacterium tuberculosis. Parikh S; Moynihan DP; Xiao G; Tonge PJ Biochemistry; 1999 Oct; 38(41):13623-34. PubMed ID: 10521269 [TBL] [Abstract][Full Text] [Related]
8. Molecular dynamics simulation studies of the wild-type, I21V, and I16T mutants of isoniazid-resistant Mycobacterium tuberculosis enoyl reductase (InhA) in complex with NADH: toward the understanding of NADH-InhA different affinities. Schroeder EK; Basso LA; Santos DS; de Souza ON Biophys J; 2005 Aug; 89(2):876-84. PubMed ID: 15908576 [TBL] [Abstract][Full Text] [Related]
9. Structure-activity studies of the inhibition of FabI, the enoyl reductase from Escherichia coli, by triclosan: kinetic analysis of mutant FabIs. Sivaraman S; Zwahlen J; Bell AF; Hedstrom L; Tonge PJ Biochemistry; 2003 Apr; 42(15):4406-13. PubMed ID: 12693936 [TBL] [Abstract][Full Text] [Related]
10. Crystal structure of the enoyl-ACP reductase of Mycobacterium tuberculosis (InhA) in the apo-form and in complex with the active metabolite of isoniazid pre-formed by a biomimetic approach. Chollet A; Mourey L; Lherbet C; Delbot A; Julien S; Baltas M; Bernadou J; Pratviel G; Maveyraud L; Bernardes-Génisson V J Struct Biol; 2015 Jun; 190(3):328-37. PubMed ID: 25891098 [TBL] [Abstract][Full Text] [Related]
11. NADH interactions with WT- and S94A-acyl carrier protein reductase from Mycobacterium tuberculosis: an ab initio study. Pantano S; Alber F; Lamba D; Carloni P Proteins; 2002 Apr; 47(1):62-8. PubMed ID: 11870865 [TBL] [Abstract][Full Text] [Related]
12. The three-dimensional structures of the Mycobacterium tuberculosis dihydrodipicolinate reductase-NADH-2,6-PDC and -NADPH-2,6-PDC complexes. Structural and mutagenic analysis of relaxed nucleotide specificity. Cirilli M; Zheng R; Scapin G; Blanchard JS Biochemistry; 2003 Sep; 42(36):10644-50. PubMed ID: 12962488 [TBL] [Abstract][Full Text] [Related]
13. Amino acid residues in the nicotinamide binding site contribute to catalysis by horse liver alcohol dehydrogenase. Rubach JK; Plapp BV Biochemistry; 2003 Mar; 42(10):2907-15. PubMed ID: 12627956 [TBL] [Abstract][Full Text] [Related]
14. Crystal structure of the Mycobacterium tuberculosis enoyl-ACP reductase, InhA, in complex with NAD+ and a C16 fatty acyl substrate. Rozwarski DA; Vilchèze C; Sugantino M; Bittman R; Sacchettini JC J Biol Chem; 1999 May; 274(22):15582-9. PubMed ID: 10336454 [TBL] [Abstract][Full Text] [Related]
15. An inorganic iron complex that inhibits wild-type and an isoniazid-resistant mutant 2-trans-enoyl-ACP (CoA) reductase from Mycobacterium tuberculosis. Oliveira JS; Sousa EH; Basso LA; Palaci M; Dietze R; Santos DS; Moreira IS Chem Commun (Camb); 2004 Feb; (3):312-3. PubMed ID: 14740053 [TBL] [Abstract][Full Text] [Related]
16. Probing mechanisms of resistance to the tuberculosis drug isoniazid: Conformational changes caused by inhibition of InhA, the enoyl reductase from Mycobacterium tuberculosis. Kruh NA; Rawat R; Ruzsicska BP; Tonge PJ Protein Sci; 2007 Aug; 16(8):1617-27. PubMed ID: 17600151 [TBL] [Abstract][Full Text] [Related]
17. Synthesis of 4-phenoxybenzamide adenine dinucleotide as NAD analogue with inhibitory activity against enoyl-ACP reductase (InhA) of Mycobacterium tuberculosis. Bonnac L; Gao GY; Chen L; Felczak K; Bennett EM; Xu H; Kim T; Liu N; Oh H; Tonge PJ; Pankiewicz KW Bioorg Med Chem Lett; 2007 Aug; 17(16):4588-91. PubMed ID: 17560106 [TBL] [Abstract][Full Text] [Related]
18. The structure of NADH in the enzyme dTDP-d-glucose dehydratase (RmlB). Beis K; Allard ST; Hegeman AD; Murshudov G; Philp D; Naismith JH J Am Chem Soc; 2003 Oct; 125(39):11872-8. PubMed ID: 14505409 [TBL] [Abstract][Full Text] [Related]
19. 1H and 13C NMR characterization of hemiamidal isoniazid-NAD(H) adducts as possible inhibitors of InhA reductase of Mycobacterium tuberculosis. Broussy S; Coppel Y; Nguyen M; Bernadou J; Meunier B Chemistry; 2003 May; 9(9):2034-8. PubMed ID: 12740851 [TBL] [Abstract][Full Text] [Related]
20. Proper positioning of the nicotinamide ring is crucial for the Ascaris suum malic enzyme reaction. Aktas DF; Cook PF Biochemistry; 2008 Feb; 47(8):2539-46. PubMed ID: 18215074 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]