BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

696 related articles for article (PubMed ID: 17472436)

  • 1. Mitochondrial dysfunction accounts for the stochastic heterogeneity in telomere-dependent senescence.
    Passos JF; Saretzki G; Ahmed S; Nelson G; Richter T; Peters H; Wappler I; Birket MJ; Harold G; Schaeuble K; Birch-Machin MA; Kirkwood TB; von Zglinicki T
    PLoS Biol; 2007 May; 5(5):e110. PubMed ID: 17472436
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Temporal changes in mitochondrial function and reactive oxygen species generation during the development of replicative senescence in human fibroblasts.
    Fujita Y; Iketani M; Ito M; Ohsawa I
    Exp Gerontol; 2022 Aug; 165():111866. PubMed ID: 35680079
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Stochastic variation in telomere shortening rate causes heterogeneity of human fibroblast replicative life span.
    Martin-Ruiz C; Saretzki G; Petrie J; Ladhoff J; Jeyapalan J; Wei W; Sedivy J; von Zglinicki T
    J Biol Chem; 2004 Apr; 279(17):17826-33. PubMed ID: 14963037
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Senescent mesenchymal cells accumulate in human fibrosis by a telomere-independent mechanism and ameliorate fibrosis through matrix metalloproteinases.
    Pitiyage GN; Slijepcevic P; Gabrani A; Chianea YG; Lim KP; Prime SS; Tilakaratne WM; Fortune F; Parkinson EK
    J Pathol; 2011 Apr; 223(5):604-17. PubMed ID: 21341274
    [TBL] [Abstract][Full Text] [Related]  

  • 5. DNA damage in telomeres and mitochondria during cellular senescence: is there a connection?
    Passos JF; Saretzki G; von Zglinicki T
    Nucleic Acids Res; 2007; 35(22):7505-13. PubMed ID: 17986462
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Mitochondria, telomeres and cell senescence.
    Passos JF; von Zglinicki T
    Exp Gerontol; 2005 Jun; 40(6):466-72. PubMed ID: 15963673
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A stochastic model of cell replicative senescence based on telomere shortening, oxidative stress, and somatic mutations in nuclear and mitochondrial DNA.
    Sozou PD; Kirkwood TB
    J Theor Biol; 2001 Dec; 213(4):573-86. PubMed ID: 11742526
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Role of oxidative stress in telomere length regulation and replicative senescence.
    von Zglinicki T
    Ann N Y Acad Sci; 2000 Jun; 908():99-110. PubMed ID: 10911951
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Telomeres and replicative senescence: Is it only length that counts?
    von Zglinicki T
    Cancer Lett; 2001 Jul; 168(2):111-6. PubMed ID: 11403914
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Disappearance of the telomere dysfunction-induced stress response in fully senescent cells.
    Bakkenist CJ; Drissi R; Wu J; Kastan MB; Dome JS
    Cancer Res; 2004 Jun; 64(11):3748-52. PubMed ID: 15172978
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Telomere and its role in the aging pathways: telomere shortening, cell senescence and mitochondria dysfunction.
    Zhu Y; Liu X; Ding X; Wang F; Geng X
    Biogerontology; 2019 Feb; 20(1):1-16. PubMed ID: 30229407
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Accumulation of single-strand breaks is the major cause of telomere shortening in human fibroblasts.
    von Zglinicki T; Pilger R; Sitte N
    Free Radic Biol Med; 2000 Jan; 28(1):64-74. PubMed ID: 10656292
    [TBL] [Abstract][Full Text] [Related]  

  • 13.
    McCully KS
    Ann Clin Lab Sci; 2018 Sep; 48(5):677-687. PubMed ID: 30373877
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Premature senescence of mesothelial cells is associated with non-telomeric DNA damage.
    Ksiazek K; Passos JF; Olijslagers S; Saretzki G; Martin-Ruiz C; von Zglinicki T
    Biochem Biophys Res Commun; 2007 Oct; 362(3):707-11. PubMed ID: 17720141
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Telomeres and Mitochondrial Metabolism: Implications for Cellular Senescence and Age-related Diseases.
    Gao X; Yu X; Zhang C; Wang Y; Sun Y; Sun H; Zhang H; Shi Y; He X
    Stem Cell Rev Rep; 2022 Oct; 18(7):2315-2327. PubMed ID: 35460064
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Oxygen free radicals in cell senescence: are they signal transducers?
    Passos JF; Von Zglinicki T
    Free Radic Res; 2006 Dec; 40(12):1277-83. PubMed ID: 17090417
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Replicative senescence induced by Romo1-derived reactive oxygen species.
    Chung YM; Lee SB; Kim HJ; Park SH; Kim JJ; Chung JS; Yoo YD
    J Biol Chem; 2008 Nov; 283(48):33763-71. PubMed ID: 18836179
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Partial uncoupling of oxidative phosphorylation induces premature senescence in human fibroblasts and yeast mother cells.
    Stöckl P; Zankl C; Hütter E; Unterluggauer H; Laun P; Heeren G; Bogengruber E; Herndler-Brandstetter D; Breitenbach M; Jansen-Dürr P
    Free Radic Biol Med; 2007 Sep; 43(6):947-58. PubMed ID: 17697939
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Does a sentinel or a subset of short telomeres determine replicative senescence?
    Zou Y; Sfeir A; Gryaznov SM; Shay JW; Wright WE
    Mol Biol Cell; 2004 Aug; 15(8):3709-18. PubMed ID: 15181152
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Abrupt telomere shortening in normal human fibroblasts.
    Vidacek NS; Cukusić A; Ivanković M; Fulgosi H; Huzak M; Smith JR; Rubelj I
    Exp Gerontol; 2010 Mar; 45(3):235-42. PubMed ID: 20080170
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 35.