These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

174 related articles for article (PubMed ID: 17472629)

  • 1. Methane-derived carbon flows through methane-oxidizing bacteria to higher trophic levels in aquatic systems.
    Deines P; Bodelier PL; Eller G
    Environ Microbiol; 2007 May; 9(5):1126-34. PubMed ID: 17472629
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Methane cycling in lake sediments and its influence on chironomid larval delta13C.
    Eller G; Deines P; Grey J; Richnow HH; Krüger M
    FEMS Microbiol Ecol; 2005 Nov; 54(3):339-50. PubMed ID: 16332332
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Fatty acid composition of aquatic insect larvae Stictochironomus pictulus (Diptera: Chironomidae): evidence of feeding upon methanotrophic bacteria.
    Kiyashko SI; Imbs AB; Narita T; Svetashev VI; Wada E
    Comp Biochem Physiol B Biochem Mol Biol; 2004 Dec; 139(4):705-11. PubMed ID: 15581802
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Changes in carbon sources fueling benthic secondary production over depth and time: coupling Chironomidae stable carbon isotopes to larval abundance.
    Frossard V; Verneaux V; Millet L; Magny M; Perga ME
    Oecologia; 2015 Jun; 178(2):603-14. PubMed ID: 25630956
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Widespread contribution of methane-cycle bacteria to the diets of lake profundal chironomid larvae.
    Jones RI; Carter CE; Kelly A; Ward S; Kelly DJ; Grey J
    Ecology; 2008 Mar; 89(3):857-64. PubMed ID: 18459348
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Assimilation of methane and inorganic carbon by microbial communities mediating the anaerobic oxidation of methane.
    Wegener G; Niemann H; Elvert M; Hinrichs KU; Boetius A
    Environ Microbiol; 2008 Sep; 10(9):2287-98. PubMed ID: 18498367
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Methane-derived carbon in the benthic food web in stream impoundments.
    Mbaka JG; Somlai C; Köpfer D; Maeck A; Lorke A; Schäfer RB
    PLoS One; 2014; 9(10):e111392. PubMed ID: 25360609
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Abundance, activity, and community structure of pelagic methane-oxidizing bacteria in temperate lakes.
    Sundh I; Bastviken D; Tranvik LJ
    Appl Environ Microbiol; 2005 Nov; 71(11):6746-52. PubMed ID: 16269705
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Isotopic compositions and probable origins of organic molecules in the Eocene Messel shale.
    Hayes JM; Takigiku R; Ocampo R; Callot HJ; Albrecht P
    Nature; 1987 Sep; 329():48-51. PubMed ID: 11540881
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Trophic state changes can affect the importance of methane-derived carbon in aquatic food webs.
    Schilder J; van Hardenbroek M; Bodelier P; Kirilova EP; Leuenberger M; Lotter AF; Heiri O
    Proc Biol Sci; 2017 Jun; 284(1857):. PubMed ID: 28637853
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Effects of chironomid larvae density and mosquito biocide on methane and carbon dioxide dynamics in freshwater sediments.
    Ganglo C; Manfrin A; Mendoza-Lera C; Lorke A
    PLoS One; 2024; 19(5):e0301913. PubMed ID: 38787834
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Methane carbon supports aquatic food webs to the fish level.
    Sanseverino AM; Bastviken D; Sundh I; Pickova J; Enrich-Prast A
    PLoS One; 2012; 7(8):e42723. PubMed ID: 22880091
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Changes in carbon and nitrogen stable isotopes of chironomid larvae during growth, starvation and metamorphosis.
    Doi H; Kikuchi E; Takagi S; Shikano S
    Rapid Commun Mass Spectrom; 2007; 21(6):997-1002. PubMed ID: 17300136
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Aerobic and nitrite-dependent methane-oxidizing microorganisms in sediments of freshwater lakes on the Yunnan Plateau.
    Liu Y; Zhang J; Zhao L; Li Y; Yang Y; Xie S
    Appl Microbiol Biotechnol; 2015 Mar; 99(5):2371-81. PubMed ID: 25698510
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Tracing the slow growth of anaerobic methane-oxidizing communities by (15)N-labelling techniques.
    Krüger M; Wolters H; Gehre M; Joye SB; Richnow HH
    FEMS Microbiol Ecol; 2008 Mar; 63(3):401-11. PubMed ID: 18269633
    [TBL] [Abstract][Full Text] [Related]  

  • 16. [Bacterial processes of the methane cycle in the bottom sediments of Baikal lake].
    Dagurova OP; Namsaraev BB; Kozyreva LP; Zemskaia TI; Dulov LE
    Mikrobiologiia; 2004; 73(2):248-57. PubMed ID: 15198038
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Methane-derived carbon flow through microbial communities in arctic lake sediments.
    He R; Wooller MJ; Pohlman JW; Tiedje JM; Leigh MB
    Environ Microbiol; 2015 Sep; 17(9):3233-50. PubMed ID: 25581131
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Molecular fossil record of elevated methane levels in late Pleistocene coastal waters.
    Hinrichs KU; Hmelo LR; Sylva SP
    Science; 2003 Feb; 299(5610):1214-7. PubMed ID: 12595688
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Sediment microbes and biofilms increase the bioavailability of chlorpyrifos in Chironomus riparius (Chironomidae, Diptera).
    Widenfalk A; Lundqvist A; Goedkoop W
    Ecotoxicol Environ Saf; 2008 Oct; 71(2):490-7. PubMed ID: 18093655
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Microbial response to salinity change in Lake Chaka, a hypersaline lake on Tibetan plateau.
    Jiang H; Dong H; Yu B; Liu X; Li Y; Ji S; Zhang CL
    Environ Microbiol; 2007 Oct; 9(10):2603-21. PubMed ID: 17803783
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.