BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

117 related articles for article (PubMed ID: 17472733)

  • 1. Multilevel regulation of growth rate in yeast revealed using systems biology.
    Ramanathan A; Schreiber SL
    J Biol; 2007; 6(2):3. PubMed ID: 17472733
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Growth control of the eukaryote cell: a systems biology study in yeast.
    Castrillo JI; Zeef LA; Hoyle DC; Zhang N; Hayes A; Gardner DC; Cornell MJ; Petty J; Hakes L; Wardleworth L; Rash B; Brown M; Dunn WB; Broadhurst D; O'Donoghue K; Hester SS; Dunkley TP; Hart SR; Swainston N; Li P; Gaskell SJ; Paton NW; Lilley KS; Kell DB; Oliver SG
    J Biol; 2007; 6(2):4. PubMed ID: 17439666
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Nutrient control of eukaryote cell growth: a systems biology study in yeast.
    Gutteridge A; Pir P; Castrillo JI; Charles PD; Lilley KS; Oliver SG
    BMC Biol; 2010 May; 8():68. PubMed ID: 20497545
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A chemical genomics approach toward understanding the global functions of the target of rapamycin protein (TOR).
    Chan TF; Carvalho J; Riles L; Zheng XF
    Proc Natl Acad Sci U S A; 2000 Nov; 97(24):13227-32. PubMed ID: 11078525
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Mitochondrial retrograde signaling.
    Liu Z; Butow RA
    Annu Rev Genet; 2006; 40():159-85. PubMed ID: 16771627
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Finding new components of the target of rapamycin (TOR) signaling network through chemical genetics and proteome chips.
    Huang J; Zhu H; Haggarty SJ; Spring DR; Hwang H; Jin F; Snyder M; Schreiber SL
    Proc Natl Acad Sci U S A; 2004 Nov; 101(47):16594-9. PubMed ID: 15539461
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Short- and long-term dynamic responses of the metabolic network and gene expression in yeast to a transient change in the nutrient environment.
    Dikicioglu D; Dunn WB; Kell DB; Kirdar B; Oliver SG
    Mol Biosyst; 2012 Jun; 8(6):1760-74. PubMed ID: 22491778
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Nutritional control via Tor signaling in Saccharomyces cerevisiae.
    Rohde JR; Bastidas R; Puria R; Cardenas ME
    Curr Opin Microbiol; 2008 Apr; 11(2):153-60. PubMed ID: 18396450
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Protein kinase A, TOR, and glucose transport control the response to nutrient repletion in Saccharomyces cerevisiae.
    Slattery MG; Liko D; Heideman W
    Eukaryot Cell; 2008 Feb; 7(2):358-67. PubMed ID: 18156291
    [TBL] [Abstract][Full Text] [Related]  

  • 10. PKA and Sch9 control a molecular switch important for the proper adaptation to nutrient availability.
    Roosen J; Engelen K; Marchal K; Mathys J; Griffioen G; Cameroni E; Thevelein JM; De Virgilio C; De Moor B; Winderickx J
    Mol Microbiol; 2005 Feb; 55(3):862-80. PubMed ID: 15661010
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Translational control by TOR and TAP42 through dephosphorylation of eIF2alpha kinase GCN2.
    Cherkasova VA; Hinnebusch AG
    Genes Dev; 2003 Apr; 17(7):859-72. PubMed ID: 12654728
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A systems biology approach to study glucose repression in the yeast Saccharomyces cerevisiae.
    Westergaard SL; Oliveira AP; Bro C; Olsson L; Nielsen J
    Biotechnol Bioeng; 2007 Jan; 96(1):134-45. PubMed ID: 16878332
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Genetic analysis of the TOR pathway in Aspergillus nidulans.
    Fitzgibbon GJ; Morozov IY; Jones MG; Caddick MX
    Eukaryot Cell; 2005 Sep; 4(9):1595-8. PubMed ID: 16151253
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Yeast Pho85 kinase is required for proper gene expression during the diauxic shift.
    Nishizawa M; Katou Y; Shirahige K; Toh-e A
    Yeast; 2004 Aug; 21(11):903-18. PubMed ID: 15334555
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Assessment of crosstalks between the Snf1 kinase complex and sphingolipid metabolism in S. cerevisiae via systems biology approaches.
    Borklu Yucel E; Ulgen KO
    Mol Biosyst; 2013 Nov; 9(11):2914-31. PubMed ID: 24056632
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Molecular communication: crosstalk between the Snf1 and other signaling pathways.
    Shashkova S; Welkenhuysen N; Hohmann S
    FEMS Yeast Res; 2015 Jun; 15(4):fov026. PubMed ID: 25994786
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Adjustable under-expression of yeast mating pathway proteins in Saccharomyces cerevisiae using a programmed ribosomal frameshift.
    Choi MY; Park SH
    Appl Microbiol Biotechnol; 2016 Jun; 100(11):4997-5005. PubMed ID: 26837218
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Reduced TOR signaling extends chronological life span via increased respiration and upregulation of mitochondrial gene expression.
    Bonawitz ND; Chatenay-Lapointe M; Pan Y; Shadel GS
    Cell Metab; 2007 Apr; 5(4):265-77. PubMed ID: 17403371
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Systems biology of AGC kinases in fungi.
    Sobko A
    Sci STKE; 2006 Sep; 2006(352):re9. PubMed ID: 16971477
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The genetic control of growth rate: a systems biology study in yeast.
    Pir P; Gutteridge A; Wu J; Rash B; Kell DB; Zhang N; Oliver SG
    BMC Syst Biol; 2012 Jan; 6():4. PubMed ID: 22244311
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.