BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

134 related articles for article (PubMed ID: 17472936)

  • 21. Novel, cyclic heat dissipation method for the correction of natural temperature gradients in sap flow measurements. Part 1. Theory and application.
    Lubczynski MW; Chavarro-Rincon D; Roy J
    Tree Physiol; 2012 Jul; 32(7):894-912. PubMed ID: 22611074
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Environmental controls on sap flow in black locust forest in Loess Plateau, China.
    Ma C; Luo Y; Shao M; Li X; Sun L; Jia X
    Sci Rep; 2017 Oct; 7(1):13160. PubMed ID: 29030585
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Estimating sap flux densities in date palm trees using the heat dissipation method and weighing lysimeters.
    Sperling O; Shapira O; Cohen S; Tripler E; Schwartz A; Lazarovitch N
    Tree Physiol; 2012 Sep; 32(9):1171-8. PubMed ID: 22887479
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Stomatal ozone uptake of a Quercus serrata stand based on sap flow measurements with calibrated thermal dissipation sensors.
    Tanaka R; Chiu CW; Gomi T; Matsuda K; Izuta T; Watanabe M
    Sci Total Environ; 2023 Aug; 888():164005. PubMed ID: 37201825
    [TBL] [Abstract][Full Text] [Related]  

  • 25. A statistical method for estimating wood thermal diffusivity and probe geometry using in situ heat response curves from sap flow measurements.
    Chen X; Miller GR; Rubin Y; Baldocchi DD
    Tree Physiol; 2012 Dec; 32(12):1458-70. PubMed ID: 23135737
    [TBL] [Abstract][Full Text] [Related]  

  • 26. A comparison of daily water use estimates derived from constant-heat sap-flow probe values and gravimetric measurements in pot-grown saplings.
    McCulloh KA; Winter K; Meinzer FC; Garcia M; Aranda J; Lachenbruch B
    Tree Physiol; 2007 Sep; 27(9):1355-60. PubMed ID: 17545135
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Quantification of uncertainties in conifer sap flow measured with the thermal dissipation method.
    Peters RL; Fonti P; Frank DC; Poyatos R; Pappas C; Kahmen A; Carraro V; Prendin AL; Schneider L; Baltzer JL; Baron-Gafford GA; Dietrich L; Heinrich I; Minor RL; Sonnentag O; Matheny AM; Wightman MG; Steppe K
    New Phytol; 2018 Sep; 219(4):1283-1299. PubMed ID: 29862531
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Measurement of sap flow in roots of woody plants: a commentary.
    Burgess SS; Adams MA; Bleby TM
    Tree Physiol; 2000 Jul; 20(13):909-13. PubMed ID: 11303581
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Influence of natural temperature gradients on measurements of xylem sap flow with thermal dissipation probes. 1. Field observations and possible remedies.
    Do F; Rocheteau A
    Tree Physiol; 2002 Jun; 22(9):641-8. PubMed ID: 12069920
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Transient thermal dissipation method of xylem sap flow measurement: multi-species calibration and field evaluation.
    Isarangkool Na Ayutthaya S; Do FC; Pannengpetch K; Junjittakarn J; Maeght JL; Rocheteau A; Cochard H
    Tree Physiol; 2010 Jan; 30(1):139-48. PubMed ID: 19864260
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Comparing ∆T
    Rabbel I; Diekkrüger B; Voigt H; Neuwirth B
    Sensors (Basel); 2016 Dec; 16(12):. PubMed ID: 27916949
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Heat dissipation sensors of variable length for the measurement of sap flow in trees with deep sapwood.
    James SA; Clearwater MJ; Meinzer FC; Goldstein G
    Tree Physiol; 2002 Mar; 22(4):277-83. PubMed ID: 11874724
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Influence of stem temperature changes on heat pulse sap flux density measurements.
    Vandegehuchte MW; Burgess SS; Downey A; Steppe K
    Tree Physiol; 2015 Apr; 35(4):346-53. PubMed ID: 25145698
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Medium-term sap flux monitoring in a Scots pine stand: analysis of the operability of the heat dissipation method for hydrological purposes.
    Oliveras I; Llorens P
    Tree Physiol; 2001 May; 21(7):473-80. PubMed ID: 11340048
    [TBL] [Abstract][Full Text] [Related]  

  • 35. A single-probe heat pulse method for estimating sap velocity in trees.
    López-Bernal Á; Testi L; Villalobos FJ
    New Phytol; 2017 Oct; 216(1):321-329. PubMed ID: 28722117
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Limitations of a compensation heat pulse velocity system at low sap flow: implications for measurements at night and in shaded trees.
    Becker P
    Tree Physiol; 1998 Mar; 18(3):177-184. PubMed ID: 12651387
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Interspecific variation in nighttime transpiration and stomatal conductance in a mixed New England deciduous forest.
    Daley MJ; Phillips NG
    Tree Physiol; 2006 Apr; 26(4):411-9. PubMed ID: 16414920
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Multi-species test and calibration of an improved transient thermal dissipation system of sap flow measurement with a single probe.
    Nhean S; Isarangkool Na Ayutthaya S; Rocheteau A; Do FC
    Tree Physiol; 2019 Jun; 39(6):1061-1070. PubMed ID: 30865277
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Variability in radial sap flux density patterns and sapwood area among seven co-occurring temperate broad-leaved tree species.
    Gebauer T; Horna V; Leuschner C
    Tree Physiol; 2008 Dec; 28(12):1821-30. PubMed ID: 19193565
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Radial variation in sap flow in five laurel forest tree species in Tenerife, Canary Islands.
    Jiménez MS; Nadezhdina N; Cermák J; Morales D
    Tree Physiol; 2000 Nov; 20(17):1149-1156. PubMed ID: 12651490
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.