These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
606 related articles for article (PubMed ID: 17472946)
41. Water supply and demand remain balanced during leaf acclimation of Nothofagus cunninghamii trees. Brodribb TJ; Jordan GJ New Phytol; 2011 Oct; 192(2):437-48. PubMed ID: 21679190 [TBL] [Abstract][Full Text] [Related]
42. Photosynthetic responses to understory shade and elevated carbon dioxide concentration in four northern hardwood tree species. Sefcik LT; Zak DR; Ellsworth DS Tree Physiol; 2006 Dec; 26(12):1589-99. PubMed ID: 17169898 [TBL] [Abstract][Full Text] [Related]
43. Ontogenetic changes in stomatal and biochemical limitations to photosynthesis of two co-occurring Mediterranean oaks differing in leaf life span. Juárez-López FJ; Escudero A; Mediavilla S Tree Physiol; 2008 Mar; 28(3):367-74. PubMed ID: 18171660 [TBL] [Abstract][Full Text] [Related]
44. The contribution of dynamic changes in photosynthesis to shade tolerance of two conifer species. Ma Z; Behling S; Ford ED Tree Physiol; 2014 Jul; 34(7):730-43. PubMed ID: 25070983 [TBL] [Abstract][Full Text] [Related]
45. Light acclimation of photosynthesis in two closely related firs (Abies pinsapo Boiss. and Abies alba Mill.): the role of leaf anatomy and mesophyll conductance to CO2. Peguero-Pina JJ; Sancho-Knapik D; Flexas J; Galmés J; Niinemets Ü; Gil-Pelegrín E Tree Physiol; 2016 Mar; 36(3):300-10. PubMed ID: 26543153 [TBL] [Abstract][Full Text] [Related]
46. Pathways and drivers of canopy accession across primary temperate forests of Europe. Pavlin J; Nagel TA; Svitok M; Di Filippo A; Mikac S; Keren S; Dikku A; Toromani E; Panayotov M; Zlatanov T; Haruta O; Dorog S; Chaskovskyy O; Bače R; Begović K; Buechling A; Dušátko M; Frankovič M; Janda P; Kameniar O; Kozák D; Marchand W; Mikoláš M; Rodrigo R; Svoboda M Sci Total Environ; 2024 Jan; 906():167593. PubMed ID: 37802334 [TBL] [Abstract][Full Text] [Related]
47. Tradeoff between shade adaptation and mitigation of photoinhibition in leaves of Quercus mongolica and Acer mono acclimated to deep shade. Kitao M; Lei TT; Koike T; Tobita H; Maruyama Y Tree Physiol; 2006 Apr; 26(4):441-8. PubMed ID: 16414923 [TBL] [Abstract][Full Text] [Related]
48. Effect of local irradiance on CO(2) transfer conductance of mesophyll in walnut. Piel C; Frak E; Le Roux X; Genty B J Exp Bot; 2002 Dec; 53(379):2423-30. PubMed ID: 12432034 [TBL] [Abstract][Full Text] [Related]
49. Sensitivity of photosynthetic electron transport to photoinhibition in a temperate deciduous forest canopy: Photosystem II center openness, non-radiative energy dissipation and excess irradiance under field conditions. Niinemets U ; Kull O Tree Physiol; 2001 Aug; 21(12-13):899-914. PubMed ID: 11498337 [TBL] [Abstract][Full Text] [Related]
50. Leaf-level acclimation to gap creation in mature Acer saccharum trees. Jones TA; Thomas SC Tree Physiol; 2007 Feb; 27(2):281-90. PubMed ID: 17241970 [TBL] [Abstract][Full Text] [Related]
51. A comparative study of physiological and morphological seedling traits associated with shade tolerance in introduced red oak (Quercus rubra) and native hardwood tree species in southwestern Germany. Kuehne C; Nosko P; Horwath T; Bauhus J Tree Physiol; 2014 Feb; 34(2):184-93. PubMed ID: 24531297 [TBL] [Abstract][Full Text] [Related]
52. Initial stomatal conductance increases photosynthetic induction of trees leaves more from sunlit than from shaded environments: a meta-analysis. Kang H; Yu Y; Ke X; Tomimatsu H; Xiong D; Santiago L; Han Q; Kardiman R; Tang Y Tree Physiol; 2024 Nov; 44(11):. PubMed ID: 39361922 [TBL] [Abstract][Full Text] [Related]
53. Morpho-anatomical and physiological differences between sun and shade leaves in Abies alba Mill. (Pinaceae, Coniferales): a combined approach. Dörken VM; Lepetit B Plant Cell Environ; 2018 Jul; 41(7):1683-1697. PubMed ID: 29664115 [TBL] [Abstract][Full Text] [Related]
54. Light compensation points in shade-grown seedlings of deciduous broadleaf tree species with different successional traits raised under elevated CO2. Kitao M; Hida T; Eguchi N; Tobita H; Utsugi H; Uemura A; Kitaoka S; Koike T Plant Biol (Stuttg); 2016 Jan; 18 Suppl 1():22-7. PubMed ID: 26404633 [TBL] [Abstract][Full Text] [Related]
55. Effects of leaf age and tree size on stomatal and mesophyll limitations to photosynthesis in mountain beech (Nothofagus solandrii var. cliffortiodes). Whitehead D; Barbour MM; Griffin KL; Turnbull MH; Tissue DT Tree Physiol; 2011 Sep; 31(9):985-96. PubMed ID: 21515907 [TBL] [Abstract][Full Text] [Related]
56. Photosynthetic acclimation to light changes in tropical monsoon forest woody species differing in adult stature. Cai ZQ; Rijkers T; Bongers F Tree Physiol; 2005 Aug; 25(8):1023-31. PubMed ID: 15929933 [TBL] [Abstract][Full Text] [Related]
57. Acclimation of leaf water status and stem hydraulics to drought and tree neighbourhood: alternative strategies among the saplings of five temperate deciduous tree species. Lübbe T; Schuldt B; Leuschner C Tree Physiol; 2017 Apr; 37(4):456-468. PubMed ID: 27881798 [TBL] [Abstract][Full Text] [Related]
58. The impact of long-term CO2 enrichment on sun and shade needles of Norway spruce (Picea abies): photosynthetic performance, needle anatomy and phenolics accumulation. Lhotáková Z; Urban O; Dubánková M; Cvikrová M; Tomášková I; Kubínová L; Zvára K; Marek MV; Albrechtová J Plant Sci; 2012 Jun; 188-189():60-70. PubMed ID: 22525245 [TBL] [Abstract][Full Text] [Related]
59. Characterization of the photosynthetic induction response in a Populus species with stomata barely responding to light changes. Tang Y; Liang N Tree Physiol; 2000 Aug; 20(14):969-76. PubMed ID: 11303572 [TBL] [Abstract][Full Text] [Related]
60. Stoichiometry of foliar carbon constituents varies along light gradients in temperate woody canopies: implications for foliage morphological plasticity. Niinemets U; Kull O Tree Physiol; 1998 Jul; 18(7):467-479. PubMed ID: 12651358 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]